Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2009

01-07-2009 | Original Article

Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study

Auteurs: Ryunosuke Nishimoto, Jun Tani

Gepubliceerd in: Psychological Research | Uitgave 4/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The current paper shows a neuro-robotics experiment on developmental learning of goal-directed actions. The robot was trained to predict visuo-proprioceptive flow of achieving a set of goal-directed behaviors through iterative tutor training processes. The learning was conducted by employing a dynamic neural network model which is characterized by their multiple time-scale dynamics. The experimental results showed that functional hierarchical structures emerge through stages of developments where behavior primitives are generated in earlier stages and their sequences of achieving goals appear in later stages. It was also observed that motor imagery is generated in earlier stages compared to actual behaviors. Our claim that manipulatable inner representation should emerge through the sensory–motor interactions is corresponded to Piaget’s constructivist view.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Arbib, M. (1981). Perceptual structures and distributed motor control. In Handbook of Physiology: The Nervous System, II. Motor Control (pp. 1448–1480). Cambridge: MIT Press. Arbib, M. (1981). Perceptual structures and distributed motor control. In Handbook of Physiology: The Nervous System, II. Motor Control (pp. 1448–1480). Cambridge: MIT Press.
go back to reference Arie, H., Endo, T., Arakaki, T., Sugeno, S., & Tani, J. (2009). Creating novel goal-directed actions at criticality: A neuro-robotic experiment. New Mathematics and Natural Computation, 5(1), 307–334. Arie, H., Endo, T., Arakaki, T., Sugeno, S., & Tani, J. (2009). Creating novel goal-directed actions at criticality: A neuro-robotic experiment. New Mathematics and Natural Computation, 5(1), 307–334.
go back to reference Beer, R. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1), 173–215.CrossRef Beer, R. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1), 173–215.CrossRef
go back to reference Butz, M. V. (2008). How and why the brain lays the foundations for a conscious self. Constructivist Foundations, 4(1), 1–14. Butz, M. V. (2008). How and why the brain lays the foundations for a conscious self. Constructivist Foundations, 4(1), 1–14.
go back to reference Butz, M., Sigaud, O., Pezzulo, G., & Baldassarre, G. (2007). Anticipatory behavior in adaptive learning systems: From brains to individual and social behavior. Berlin: Springer.CrossRef Butz, M., Sigaud, O., Pezzulo, G., & Baldassarre, G. (2007). Anticipatory behavior in adaptive learning systems: From brains to individual and social behavior. Berlin: Springer.CrossRef
go back to reference Decety, J. (1996). Do executed and imagined movements share the same central structures? Cognitive Brain Research, 3, 87–93.PubMedCrossRef Decety, J. (1996). Do executed and imagined movements share the same central structures? Cognitive Brain Research, 3, 87–93.PubMedCrossRef
go back to reference Diamond, A. (1991). Neuropsychological insights into the meaning of object concept development. Hillsdale: Erlbaum. Diamond, A. (1991). Neuropsychological insights into the meaning of object concept development. Hillsdale: Erlbaum.
go back to reference Doya, K., & Yoshizawa, S. (1989). Memorizing oscillatory patterns in the analog neuron network. In Proceedings of 1989 international joint conference on neural networks, washington, D.C. (pp. I:27–32). Doya, K., & Yoshizawa, S. (1989). Memorizing oscillatory patterns in the analog neuron network. In Proceedings of 1989 international joint conference on neural networks, washington, D.C. (pp. I:27–32).
go back to reference Ehrsson, H., Fagergren, A., Johansson, R., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90, 2978–2986.PubMedCrossRef Ehrsson, H., Fagergren, A., Johansson, R., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90, 2978–2986.PubMedCrossRef
go back to reference Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211.CrossRef Elman, J. (1990). Finding structure in time. Cognitive Science, 14, 179–211.CrossRef
go back to reference Elman, J. L., Bates, A. E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1997). Rethinking innateness a connectionist perspective on development. Cambridge: MIT Press. Elman, J. L., Bates, A. E. A., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1997). Rethinking innateness a connectionist perspective on development. Cambridge: MIT Press.
go back to reference Eskandar, E., & Assad, J. (1999). Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neuroscience, 2, 88–93.PubMedCrossRef Eskandar, E., & Assad, J. (1999). Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nature Neuroscience, 2, 88–93.PubMedCrossRef
go back to reference Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of sport psychology, 5, 25–57. Feltz, D. L., & Landers, D. M. (1983). The effects of mental practice on motor skill learning and performance: A meta-analysis. Journal of sport psychology, 5, 25–57.
go back to reference Flanagan, J., Vetter, P., Johansson, R., & Wolpert, D. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.PubMedCrossRef Flanagan, J., Vetter, P., Johansson, R., & Wolpert, D. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.PubMedCrossRef
go back to reference Fuster, J. (1989). The Prefrontal Cortex. New York: Raven Press. Fuster, J. (1989). The Prefrontal Cortex. New York: Raven Press.
go back to reference Haruno, M., Wolpert, D., & Kawato, M. (2003). Hierarchical mosaic for movement generation. International Congress Series, 1250, 575–590.CrossRef Haruno, M., Wolpert, D., & Kawato, M. (2003). Hierarchical mosaic for movement generation. International Congress Series, 1250, 575–590.CrossRef
go back to reference Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Science, 6(6), 242-247.CrossRef Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Science, 6(6), 242-247.CrossRef
go back to reference Imazu, S., Sugio, T., Tanaka, S., & Inui, T. (2007). Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex, 43(3), 301-307.PubMedCrossRef Imazu, S., Sugio, T., Tanaka, S., & Inui, T. (2007). Differences between actual and imagined usage of chopsticks: an fMRI study. Cortex, 43(3), 301-307.PubMedCrossRef
go back to reference Ito, M., Noda, K., Hoshino, Y., & Tani, J. (2006). Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks, 19, 323–337.PubMedCrossRef Ito, M., Noda, K., Hoshino, Y., & Tani, J. (2006). Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Networks, 19, 323–337.PubMedCrossRef
go back to reference Jeannerod, M. (1994). The representing brain: neural correlates of motor imitation and imaginary. Behavioral and Brain Science, 17, 187–245.CrossRef Jeannerod, M. (1994). The representing brain: neural correlates of motor imitation and imaginary. Behavioral and Brain Science, 17, 187–245.CrossRef
go back to reference Jordan, M., & Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6(2), 181–214.CrossRef Jordan, M., & Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6(2), 181–214.CrossRef
go back to reference Jordan, M., & Rumelhart, D. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.CrossRef Jordan, M., & Rumelhart, D. (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.CrossRef
go back to reference Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge: MIT Press. Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge: MIT Press.
go back to reference Kawato, M., Maeda, Y., Uno, Y., & Suzuki, R. (1990). Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biological Cybernetics, 62(4), 275–288.PubMedCrossRef Kawato, M., Maeda, Y., Uno, Y., & Suzuki, R. (1990). Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biological Cybernetics, 62(4), 275–288.PubMedCrossRef
go back to reference Luria, A. (1973). The working brain. London: Penguin Books Ltd. Luria, A. (1973). The working brain. London: Penguin Books Ltd.
go back to reference McCarthy, J. (1963). Situations, actions and causal laws. (Stanford Artificial Intelligence Project, Memo2). McCarthy, J. (1963). Situations, actions and causal laws. (Stanford Artificial Intelligence Project, Memo2).
go back to reference Namikawa, J., & Tani, J. (2008). A model for learning to segment temporal sequences, utilizing a mixture of rnn experts together with adaptive variance. Neural Networks, 21, 1466–1475.PubMedCrossRef Namikawa, J., & Tani, J. (2008). A model for learning to segment temporal sequences, utilizing a mixture of rnn experts together with adaptive variance. Neural Networks, 21, 1466–1475.PubMedCrossRef
go back to reference Nishimoto, R., Namikawa, J., & Tani, J. (2008). Learning multiple goal-directed actions through self-organization of a dynamic neural network model: A humanoid robot experiment. Adaptive Behavior, 16, 166–181.CrossRef Nishimoto, R., Namikawa, J., & Tani, J. (2008). Learning multiple goal-directed actions through self-organization of a dynamic neural network model: A humanoid robot experiment. Adaptive Behavior, 16, 166–181.CrossRef
go back to reference Nolfi, S. (2002). Evolving robots able to self-localize in the environment: The importance of viewing cognition as the result of processes occurring at different time scales. Connection Science, 14(3), 231–244.CrossRef Nolfi, S. (2002). Evolving robots able to self-localize in the environment: The importance of viewing cognition as the result of processes occurring at different time scales. Connection Science, 14(3), 231–244.CrossRef
go back to reference Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18, 179–225.CrossRef Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18, 179–225.CrossRef
go back to reference Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.CrossRef Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.CrossRef
go back to reference Rizzolatti, G., Fadiga, L., Galless, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.PubMedCrossRef Rizzolatti, G., Fadiga, L., Galless, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131–141.PubMedCrossRef
go back to reference Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel distributed processing (pp. 318–362). Cambridge: MIT Press. Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.), Parallel distributed processing (pp. 318–362). Cambridge: MIT Press.
go back to reference Schoner, S., & Kelso, S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239, 1513–1519.PubMedCrossRef Schoner, S., & Kelso, S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239, 1513–1519.PubMedCrossRef
go back to reference Smith, L., & Thelen, E. (1994). A dynamic systems approach to the development of cognition and action. Cambridge: MIT Press. Smith, L., & Thelen, E. (1994). A dynamic systems approach to the development of cognition and action. Cambridge: MIT Press.
go back to reference Sugita, Y., & Tani, J. (2005). Learning semantic combinatoriality from the interaction between linguistic and behavioral processes. Adaptive Behavior, 13(3), 33–51.CrossRef Sugita, Y., & Tani, J. (2005). Learning semantic combinatoriality from the interaction between linguistic and behavioral processes. Adaptive Behavior, 13(3), 33–51.CrossRef
go back to reference Tani, J. (1996). Model-Based Learning for Mobile Robot Navigation from the Dynamical Systems Perspective. IEEE Transaction on SMC (B), 26(3), 421–436. Tani, J. (1996). Model-Based Learning for Mobile Robot Navigation from the Dynamical Systems Perspective. IEEE Transaction on SMC (B), 26(3), 421–436.
go back to reference Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and the top-down interaction process. Neural Networks, 16, 11–23.PubMedCrossRef Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and the top-down interaction process. Neural Networks, 16, 11–23.PubMedCrossRef
go back to reference Tani, J., & Fukumura, N. (1994). Learning Goal-directed Sensory-based Navigation of a Mobile Robot. Neural Networks, 7(3). Tani, J., & Fukumura, N. (1994). Learning Goal-directed Sensory-based Navigation of a Mobile Robot. Neural Networks, 7(3).
go back to reference Tani, J., Ito, M., & Sugita, Y. (2004). Self-organization of distributedly represented multiple behavior schemata in a mirror system: Reviews of robot experiments using RNNPB. Neural Networks, 17, 1273–1289.PubMedCrossRef Tani, J., Ito, M., & Sugita, Y. (2004). Self-organization of distributedly represented multiple behavior schemata in a mirror system: Reviews of robot experiments using RNNPB. Neural Networks, 17, 1273–1289.PubMedCrossRef
go back to reference Tani, J., Nishimoto, R., Namikawa, J., & Ito, M. (2008a). Codevelopmental learning between human and humanoid robot using a dynamic neural network model. IEEE Transaction on System, Man and Cybernetics, 38(1), 43–59.CrossRef Tani, J., Nishimoto, R., Namikawa, J., & Ito, M. (2008a). Codevelopmental learning between human and humanoid robot using a dynamic neural network model. IEEE Transaction on System, Man and Cybernetics, 38(1), 43–59.CrossRef
go back to reference Tani, J., Nishimoto, R., & Paine, R. (2008b). Achieving “organic compositionality” through self-organization: Reviews on brain-inspired robotics experiments. Neural Networks, 21, 584–603.PubMedCrossRef Tani, J., Nishimoto, R., & Paine, R. (2008b). Achieving “organic compositionality” through self-organization: Reviews on brain-inspired robotics experiments. Neural Networks, 21, 584–603.PubMedCrossRef
go back to reference Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: An approach for hierarchical learning in sensory–motor systems. Neural Networks, 12, 1131–1141.PubMedCrossRef Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: An approach for hierarchical learning in sensory–motor systems. Neural Networks, 12, 1131–1141.PubMedCrossRef
go back to reference Vogt, S. (1995). On relations between perceiving, imaging and performing in the learning of cyclical movement sequences. British journal of Psychology, 86, 191–216.PubMed Vogt, S. (1995). On relations between perceiving, imaging and performing in the learning of cyclical movement sequences. British journal of Psychology, 86, 191–216.PubMed
go back to reference Wolpert, D., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.PubMedCrossRef Wolpert, D., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.PubMedCrossRef
go back to reference Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology, 4(11). Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple timescale neural network model: A humanoid robot experiment. PLoS Computational Biology, 4(11).
go back to reference Ziemke, T., Jirenhed, D., & Hesslow, G. (2005). Internal simulation of perception: Minimal neurorobotic model. Neurocomputing, 68, 85–104. Ziemke, T., Jirenhed, D., & Hesslow, G. (2005). Internal simulation of perception: Minimal neurorobotic model. Neurocomputing, 68, 85–104.
Metagegevens
Titel
Development of hierarchical structures for actions and motor imagery: a constructivist view from synthetic neuro-robotics study
Auteurs
Ryunosuke Nishimoto
Jun Tani
Publicatiedatum
01-07-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-009-0236-0

Andere artikelen Uitgave 4/2009

Psychological Research 4/2009 Naar de uitgave