Skip to main content
Log in

Coordinating with the Future: The Anticipatory Nature of Representation

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

Humans and other animals are able not only to coordinate their actions with their current sensorimotor state, but also to imagine, plan and act in view of the future, and to realize distal goals. In this paper we discuss whether or not their future-oriented conducts imply (future-oriented) representations. We illustrate the role played by anticipatory mechanisms in natural and artificial agents, and we propose a notion of representation that is grounded in the agent’s predictive capabilities. Therefore, we argue that the ability that characterizes and defines a true cognitive mind, as opposed to a merely adaptive system, is that of building representations of the non-existent, of what is not currently (yet) true or perceivable, of what is desired. A real mental activity begins when the organism is able to endogenously (i.e. not as the consequence of current perceptual stimuli) produce an internal representation of the world in order to select and guide its conduct goal-directed: the mind serves to coordinate with the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Additional functions such as action planning, monitoring, and control, are also possible thanks to this functional organization of action. See also (Rosenblueth et al. 1943) for related ideas in behavior control in early cybernetics.

  2. See also (Schubotz 2007) for a discussion of how internal models developed for predicting and controlling one’s own motor system can be used for predicting and simulating external events.

  3. Gardenfors (2004) uses a similar notion of detachment for distinguishing agents which are able to refer to situations which are not motivated by actual or recent stimuli.

  4. It is worth noting that this perspective is at odds with the current view about emergence and self-organizing systems (Haken 1988; Kelso 1995) in which multiple levels of reality and of explanation are recognized to be autonomous (without denying interdependences), against any reductionism. This does not mean that in principle any level of explanation is correct, but that those who prove to be good according to the usual scientific criteria, are guaranteed a role in science: and mentalistic theories have of course to pass this test.

References

  • Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–149.

    Google Scholar 

  • Arbib, M. (1992). Schema theory. In S. Shapiro (Ed.), Encyclopedia of artificial intelligence (2nd ed., Vol. 2, pp. 1427–1443). Wiley.

  • Balkenius, C., & Hulth, N. (1999). Attention as selection-for-action: A scheme for active perception. In Proceedings of EuRobot-1999, Zurich.

  • Ballard, D. (1991). Animate vision. Artificial Intelligence, 48(1), 1–27.

    Article  MathSciNet  Google Scholar 

  • Balleine, B. W., & Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology, 37(4–5), 407–419.

    Article  Google Scholar 

  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–600.

    Google Scholar 

  • Barsalou, L. W. (2003). Abstraction in perceptual symbol systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1435), 1177–1187.

    Article  Google Scholar 

  • Barsalou, L., Simmons, W. K., Barbey, A., & Wilson, C. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91.

    Article  Google Scholar 

  • Beer, R. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72, 173–215.

    Article  Google Scholar 

  • Beer, R. (1997). The dynamics of adaptive behavior: A research program. Robotics and Autonomous Systems, 20, 257–289.

    Article  Google Scholar 

  • Bickhard, M. H. (1998). Levels of representationality. Journal of Experimental and Theoretical Artificial Intelligence, 10(2), 179–215.

    Article  Google Scholar 

  • Bickhard, M. H. (2001). Function, anticipation and representation. In D. M. Dubois, (Ed.), Computing Anticipatory Systems. CASYS 2000 – Fourth International Conference (pp. 459–469). Melville, NY. American Institute of Physics.

  • Bickhard, M. H., & Terveen, L. (1995). Foundational issues in artificial intelligence and cognitive science: Impasse and solution. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Blakemore, S.-J., & Decety, J. (2001). From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561–567.

    Google Scholar 

  • Bongard, J., Zykov, V., & Lipson, H. (2006a). Resilient machines through continuous self-modeling. Science, 314(5802), 1118–1121.

    Article  Google Scholar 

  • Bongard, J. C., Zykov, V., & Lipson, H. (2006b). Automated synthesis of body schema using multiple sensor modalities. In Proceedings of the Tenth International Conference on the Simulation and Synthesis of Living Systems (ALIFEX) (pp. 220–226).

  • Breazeal, C., & Scassellati, B. (1999). A context-dependent attention system for a social robot. In IJCAI ’99: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (pp. 1146–1153). Morgan Kaufmann Publishers Inc.

  • Brentano, F. (1985). Psychology from an Empirical Standpoint (trans: Rancurello, A. C., Terrell, D. B., & McAlister, L. L.). London: Routledge.

  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(47), 139–159.

    Article  Google Scholar 

  • Butz, M. V. (2002). Anticipatory learning classifier systems. Boston, MA: Kluwer Academic Publishers.

    MATH  Google Scholar 

  • Butz, M. V., Sigaud, O., & Gérard, P. (2003). Internal models and anticipations in adaptive learning systems. In M. V. Butz, O. Sigaud, & P. Gérard (Eds.), Anticipatory behavior in adaptive learning systems: Foundations, theories, and systems (pp. 86–109). Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Camazine, S., Franks, N. R., Sneyd, J., Bonabeau, E., Deneubourg, J.-L., & Theraula, G. (2001). Self-organization in biological systems. Princeton, NJ, USA: Princeton University Press.

    Google Scholar 

  • Cangelosi, A. (2006). The grounding and sharing of symbols. Pragmatics and Cognition, 14, 275–285.

    Article  Google Scholar 

  • Carlsson, K., Petrovic, P., Skare, S., Petersson, K. M., & Ingvar, M. (2000). Tickling expectations: Neural processing in anticipation of a sensory stimulus. Journal of Cognitive Neuroscience, 12(4), 691–703.

    Article  Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1988). The art of adaptive pattern recognition by a self-organizing neural network. Computer, 21(3), 77–88.

    Article  Google Scholar 

  • Castelfranchi, C. (2005). Mind as an anticipatory device: For a theory of expectations. In BVAI 2005, pp. 258–276.

  • Chalmers, D. (1996). The conscious mind. Oxford University Press, New York. Tr. It., La mente cosciente, McGraw- Hill, 1999.

  • Chiel, H. J., & Beer, R. D. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences, 20, 553–557.

    Article  Google Scholar 

  • Churchland, P. (1992). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cisek, P., & Kalaska, J. (2001). Common codes for situated interaction. Behavioral and Brain Sciences, 24(5), 883–884.

    Google Scholar 

  • Clark, A. (1998). Being there. Putting brain, body, and world together. MIT Press.

  • Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58, 10–23.

    Article  Google Scholar 

  • Clark, A., & Grush, R. (1999). Towards a cognitive robotics. Adaptive Behavior, 7(1), 5–16.

    Article  Google Scholar 

  • Colombo, M., & Graziano, M. (1994). Effects of auditory and visual interference on auditory-visual delayed matching to sample in monkeys (maca fascicularis). Behavioral Neuroscience, 108, 636–639.

    Article  Google Scholar 

  • Conte, R., & Castelfranchi, C. (1995). Cognitive and social action. London, UK: University College London.

    Google Scholar 

  • Cotterill, R. (1998). Enchanted looms: Conscious networks in brains and computers. Cambridge University Press.

  • Cotterill, R. (2001). Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: Possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 64, 1–33.

    Article  Google Scholar 

  • Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.

    Google Scholar 

  • Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the human brain. New York: Grosset/Putnam.

    Google Scholar 

  • Dautenhahn, K., & Nehaniv, C. (2002). Imitation in animals and artifacts. MIT Press.

  • Decety, J. (1996). Do imagined and executed actions share the same neural substrate? Brain Research. Cognitive Brain Research, 3, 87–93.

    Article  Google Scholar 

  • Decety, J., & Chaminade, T. (2003). When the self represents the other: A new cognitive neuroscience view on psychological identification. Consciousness and Cognition, 12(20), 577–596.

    Article  Google Scholar 

  • Decety, J., Grèzes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., Grassi, F., & Fazio, F. (1997). Brain activity during observation of actions. influence of action content and subject’s strategy. Brain, 120(Pt 10), 1763–1777.

    Article  Google Scholar 

  • Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behavioural Brain Research, 34(1–2), 35–42.

    Article  Google Scholar 

  • Delcomyn, F. (1980). Neural basis for rhythmic behaviour in animals. Science, 210, 492–498.

    Article  Google Scholar 

  • Demiris, Y. (2007). Prediction of intent in robotics and multi-agent systems. Cognitive Processing, 8(3), 151–158.

    Article  Google Scholar 

  • Demiris, J., & Hayes, G. (1996). Imitative learning mechanisms in robots and humans. In Proceedingsof the 5th European Workshop on Learning Robot, pp. 9–16.

  • Demiris, Y., & Khadhouri, B. (2005). Hierarchical attentive multiple models for execution and recognition (hammer). Robotics and Autonomous Systems Journal, 54, 361–369.

    Article  Google Scholar 

  • Dennett, D. C. (1991). Consciousness explained. Little, Brown & Co.

  • Desmurget, M., & Grafton, S. (2000). Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Sciences, 4, 423–431.

    Article  Google Scholar 

  • Dewey, J. (1896). The reflex arc concept in psychology. Psychological Review, 3, 357–370.

    Article  Google Scholar 

  • Doya, K. (1996). Temporal difference learning in continuous time and space. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 1073–1079). The MIT Press.

  • Drescher, G. L. (1991). Made-up minds: A constructivist approach to artificial intelligence. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Dunker, K. (1935). Psychology des produktiven Denkens. Berlin: Springer.

    Google Scholar 

  • Edelman, G. M. (1987). Neural Darwinism: The Theory of Neuronal Group Selection. New York: Basic Books

    Google Scholar 

  • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.

    Article  Google Scholar 

  • Fleischer, J. G. (2007). Neural correlates of anticipation in cerebellum, basal ganglia, and hippocampus. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Anticipatory behavior in adaptive learning systems: Advances in anticipatory processing, LNAI 4520. Springer.

  • Fodor, J. (1975). The language of thought. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Fodor, J. A. (1980). Methodological solipsism considered as a research strategy in cognitive psychology. Behavioral and Brain Sciences, 3, 63–109.

    Google Scholar 

  • Fogassi, L., Ferrari, P., Chersi, F., Gesierich, B., Rozzi, S., & Rizzolatti, G. (2005). Parietal lobe: From action organization to intention understanding. Science, 308, 662–667.

    Article  Google Scholar 

  • Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–1352.

    Article  Google Scholar 

  • Frith, C. (2007). Making up the mind. How the brain creates our mental world. Blackwell.

  • Frith, C. D., & Frith, U. (2006). How we predict what other people are going to do. Brain Research, 1079(1), 36–46.

    Article  Google Scholar 

  • Gallagher, S., & Jeannerod, M. (2002). From action to interaction. Journal of Consciousness Studies, 9(24), 3–26.

    Google Scholar 

  • Gallese, V. (2000). The inner sense of action: Agency and motor representations. Journal of Consciousness Studies, 7, 23–40.

    Google Scholar 

  • Gallese, V. (2001). The ’shared manifold’ hypothesis. from mirror neurons to empathy. Journal of Consciousness Studies, 8, 5–87.

    Google Scholar 

  • Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501.

    Article  Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in reason and language. Cognitive Neuropsychology, 22, 455–479.

    Article  Google Scholar 

  • Gallese, V., & Metzinger, T. (2003). Motor ontology: The representational reality of goals, actions, and selves. Philosophical Psychology, 13(3), 365–388.

    Article  Google Scholar 

  • Gardenfors, P. (2004). Cooperation and the evolution of symbolic communication. In K. Oller & U. Griebel (Eds.), Evolution of communication systems: A comparative approach (pp. 237–256). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gardenfors, P., & Orvath, M. (2005). The evolution of anticipatory cognition as a precursor to symbolic communication. In S. Brook (Ed.), Proceedings of the Morris Symposium on the Evolution of Language, NY, USA.

  • Gattis, M. (2001). Spatial schemas in abstract thought. Cambridge: MIT Press.

    Google Scholar 

  • Gers, F. A., Schraudolph, N. N., & Schmidhuber, J. (2003). Learning precise timing with lstm recurrent networks. Journal of Machine Learning Research, 3, 115–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Ghez, C., & Thach, W. T. (2000). Principles of neural science, chapter The cerebellum (4th ed., pp. 833–835). New York: McGraw-Hill.

    Google Scholar 

  • Gibson, J. (1966). The senses considered as perceptual systems. Boston, MA: Houghton Mifflin.

    Google Scholar 

  • Gibson, J. (1979). The ecological approach to visual perception. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Glenberg, A. (1997). What memory is for. Behavioral and Brain Sciences, 20, 1–55.

    Google Scholar 

  • Goldman, A. (2005). Imitation, mind reading, and simulation. In S. Hurley & N. Chater (Eds.), Perspectives on imitation II (pp. 80–81). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gorniak, P., & Roy, D. (2007). Situated language understanding as filtering perceived affordances. Cognitive Science, 31(2), 197–231.

    Google Scholar 

  • Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: With special reference to the ideomotor mechanism. Psychological Review, 77, 73–99.

    Article  Google Scholar 

  • Gross, H.-M., Volker, S., & Torsten, S. (1999). A neural architecture for sensorimotor anticipation. Neural Networks, 12, 1101–1129.

    Article  Google Scholar 

  • Grush, R. (1997). The architecture of representation. Philosophical Psychology, 10(1), 5–25.

    Article  Google Scholar 

  • Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27(3), 377–396.

    Google Scholar 

  • Gurney, K., Prescott, T., & Redgrave, P. (2001). A computational model of action selection in the basal ganglia, i. a new functional anatomy. Biological Cybernetics, 84, 401–410.

    Article  MATH  Google Scholar 

  • Haken, H. (1988). Information and self-organization, a macroscopic approach to complex systems. Berlin/New York: Springer-Verlag.

    MATH  Google Scholar 

  • Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42, 335–346.

    Article  Google Scholar 

  • Haruno, M., Wolpert, D., & Kawato, M. (2003). Hierarchical mosaic for movement generation. In T. Ono, G. Matsumoto, R. Llinas, A. Berthoz, H. Norgren, & R. Tamura (Eds.) Excepta medica international coungress series. Amsterdam: Elsevier Science.

    Google Scholar 

  • Heidegger, M. (1977). Sein und Zeit. Tübingen: Niemeyer.

    Google Scholar 

  • Hesslow, G. (2002). Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences, 6, 242–247.

    Article  Google Scholar 

  • Hoffmann, H. (2007). Perception through visuomotor anticipation in a mobile robot. Neural Networks, 20, 22–33.

    Article  MATH  Google Scholar 

  • Hoffmann, H., & Moller, R. (2004). Action selection and mental transformation based on a chain of forward models. In S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar, J. Hallam, & J.-A. Meyer (Eds.), From Animals to Animats 8, Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior (pp. 213–222). Los Angeles, CA: MIT Press.

  • Hoffmann, J. (1993). Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung [Anticipation and cognition: The function of anticipations in human behavioral control and perception]. Goettingen, Germany: Hogrefe.

    Google Scholar 

  • Hoffmann, J., Stöcker, C., & Kunde, W. (2004). Anticipatory control of actions. International Journal of Sport and Exercise Psychology, 2, 346–361.

    Google Scholar 

  • Hommel, B. (2003). Planning and representing intentional action. The Scientific World Journal, 3, 593–608.

    Google Scholar 

  • Hommel, B., Musseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (tec): A framework for perception and action planning. Behavioral and Brain Science, 24(5), 849–878.

    Article  Google Scholar 

  • Houk, J. C., & Wise, S. P. (1995). Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: Their role in planning and controlling action. Cerebral Cortex, 5(2), 95–110.

    Article  Google Scholar 

  • Hurley, S. L. (2005). Active perception and perceiving action: The shared circuits hypothesis. In T. Gendler & J. Hawthorne (Eds.), Perceptual experience. Oxford: Oxford University Press.

    Google Scholar 

  • Hurley, S., & Chater, N. (2004). Perspectives on imitation: From cognitive neuroscience to social science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Husserl, E. (1982). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. Nijhoff: The Hague.

    Google Scholar 

  • Iacoboni, M. (2002). Modulation of motor and premotor activity during imitation of target-directed actions. Cereb Cortex, 12, 847–855.

    Article  Google Scholar 

  • Iacoboni, M. (2003). Understanding others: Imitation, language, empathy. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From cognitive neuroscience to social science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jacobs, R., Jordan, M., Nowlan, S., & Hinton, G. (1991). Adaptive mixtures of local experts. Neural Computation, 3, 79–87.

    Article  Google Scholar 

  • James, W. (1890). The principles of psychology. New York: Dover Publications.

    Google Scholar 

  • James, M., Singh, S., & Littman, M. (2004). Planning with predictive state representations. In Proceedings of the International Conference on Machine Learning and Applications (pp. 304–311).

  • Jeannerod, M. (1979). Visuomotor experiments: Failure to replicate, or failure to match the theory? Behavioral and Brain Sciences, 2, 71.

    Google Scholar 

  • Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. The Behavioral and Brain Sciences, 17, 187–245.

    Google Scholar 

  • Jeannerod, M. (1997). The cognitive neuroscience of action. Oxford: Blackwell.

    Google Scholar 

  • Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage, 14, S103–S109.

    Article  Google Scholar 

  • Jeannerod, M., & Decety, J. (1995). Mental motor imagery: A window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732.

    Article  Google Scholar 

  • Jeannerod, M., & Pacherie, E. (2004). Agency, simulation, and self-identification. Mind and Language, 19(2), 113–146.

    Article  Google Scholar 

  • Johnson, M., & Demiris, Y. (2005a). Hierarchies of coupled inverse and forward models for abstraction in robot action planning, recognition and imitation. In Proceedings of the AISB 2005 Symposium on Imitation in Animals and Artifacts (pp. 69–76). Hertfordshire, UK.

  • Johnson, M., & Demiris, Y. (2005b). Perceptual perspective taking and action recognition. International Journal of Advanced Robotic Systems, 2(4), 301–309.

    Google Scholar 

  • Johnson-Laird, P. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge: Cambridge University Press and Harvard University Press.

    Google Scholar 

  • Jordan, M. I., & Rumelhart (1992). Forward models: Supervised learning with a distal teacher. Cognitive Science, 16, 307–354.

    Article  Google Scholar 

  • Kant, I. (1781/1998). Critique of pure reason. Cambridge: Cambridge University Press.

  • Kaplan, F., & Hafner, V. (2006). The challenges of joint attention. Interaction Studies, 7(2).

  • Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.

    Google Scholar 

  • Kawato, M. (1990). Computational schemes and neural network models for formulation and control of multijoint arm trajectories. In W. T. Miller, R. S. Sutton, & P. J. Werbos (Eds.), Neural Networks for Control (pp. 197–228). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kawato, M. (1999). Internal models for motor control and trajectory planning. Current Opinion in Neurobiology, 9, 718–727.

    Article  Google Scholar 

  • Keijzer, F. (2001). Representation and behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kelso, J. A. (1991). Anticipatory dynamical systems, intrinsic pattern dynamics and skill learning. Human Movement Science, 10(1), 93–111.

    Article  Google Scholar 

  • Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, Mass: MIT Press.

    Google Scholar 

  • Knoblich, G., & Prinz, W. (2005). Higher-order motor disorders, chapter Linking perception and action: An ideomotor approach (pp. 79–104). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Kondo, T., & Ito, K. (2006). A design principle of adaptive neural controllers for realizing anticipatory behavior in reaching movement under unexperienced environments. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre, (Eds.), Proceedings of the Third Workshop on Anticipatory Behavior in Adaptive Learning Systems (ABiALS 2006).

  • Kording, K., & Wolpert, D. (2006). Bayesian decision theory in sensorimotor control. Trends in Cognitive Sciences, 10, 319–326.

    Article  Google Scholar 

  • Kosslyn, S. M., & Sussman, A. (1994). Roles of imagery in perception: Or, there is no such thing as immaculate perception. In M. Gazzaniga (Ed.), The cognitive neurosciences (pp. 1035–1042). Cambridge, MA: MIT Press.

    Google Scholar 

  • Kuipers, B., Beeson, P., Modayil, J., & Provost, J. (2006). Bootstrap learning of foundational representations. Connection Science (accepted for publication), 18(2).

  • Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation and execution of actions. The Quarterly Journal of Experimental Psychology. Section A: Human Experimental Psychology, 57(1), 87–106.

    Article  Google Scholar 

  • Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago: University of Chicago Press.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. Basic Books.

  • Landauer, T. K. (1962). Rate of implicit speech. Perceptual and Motor Skills, 15, 646.

    Google Scholar 

  • Littman, M., Sutton, R., & Singh, S. (2001). Predictive representations of state. In Proceedings of NIPS-02, Vancouver.

  • Lu, X., & Ashe, J. (2005). Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron, 45(6), 967–973.

    Article  Google Scholar 

  • Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2004). Developmental robotics: A survey. Connection Science, 0(0), 1–40.

    Google Scholar 

  • Maravita, A., Spence, C., & Driver, J. (2003). Multisensory integration and the body schema: Close to hand and within reach. Current Biology, 13(13), R531–R539.

    Article  Google Scholar 

  • Markman, A. B., & Dietrich, E. (2000). Extending the classical view of representation. Trends in Cognitive Sciences, 4(12), 470–475.

    Article  Google Scholar 

  • Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of living. Dordrecht, Holland: D. Reidel Pub.

    Google Scholar 

  • Mehta, B., & Schaal, S. (2002). Forward models in visuomotor control. Journal of Neurophysiology, 88, 942–953.

    Google Scholar 

  • Mel, B. (1990). Vision-based robot motion planning. In W. T. Miller III, R. S. Sutton, & P. Werbos (Eds.), Neural Networks for Control. Bradford: MIT.

  • Meltzoff, A., & Prinz, W. (2002). The imitative mind: Development, evolution and brain bases. Cambridge University Press, Cambridge.

  • Merleau-Ponty, M. (1945). Phénoménologie de la perception. Paris: Gallimard.

    Google Scholar 

  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.

    Article  MATH  Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42(2), 183–200.

    Article  Google Scholar 

  • Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Mohan, V., & Morasso, P. (2006). A forward/inverse motor controller for cognitive robotics. In Proceedings of the International Conference on Artifical Neural Networks (pp. 602–611).

  • Neisser, U. (1976). Cognition and reality. San Francisco, CA: Freeman.

    Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Nolfi, S. (2002). Power and limits of reactive agents. Neurocomputing, 49, 119–145.

    Article  Google Scholar 

  • Nolfi, S. (2005). Behaviour as a complex adaptive system: On the role of self-organization in the development of individual and collective behaviour. ComplexUs, 2, 195–203.

    Article  Google Scholar 

  • O’Regan, J., & Noe, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 883–917.

    Google Scholar 

  • Oudeyer, P.-Y., Kaplan, F., Hafner, V. V., & Whyte, A. (2005). The playground experiment: Task-independent development of a curious robot. In D. Bank & L. Meeden (Eds.), Proceedings of the AAAI Spring Symposium on Developmental Robotics, 2005 (pp. 42–47). Stanford, California.

  • Pacherie, E., & Dokic, J. (2006). From mirror neurons to joint actions. Cognitive Systems Research, 7(2–3), 101–112.

    Article  Google Scholar 

  • Paine, R. W., & Tani, J. (2005). How hierarchical control self-organizes in artificial adaptive systems. Adaptive Behavior, 13(3), 211–225.

    Article  Google Scholar 

  • Peirce, C. S. (1897/1940). Philosophical writings of Peirce, chapter Logic as semiotic: The theory of signs. Dover.

  • Pezzulo, G. (2006). How can a massively modular mind be context-sensitive? A computational approach. In Proceedings of the 7th International Conference on Cognitive Modeling 2006.

  • Pezzulo, G., Baldassarre, G., Butz, M. V., Castelfranchi, C., & Hoffmann, J. (2007). From actions to goals and vice-versa: Theoretical analysis and models of the ideomotor principle and tote. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Anticipatory behavior in adaptive learning systems: Advances in anticipatory processing, LNAI 4520. Springer.

  • Pezzulo, G., & Calvi, G. (2006a). A schema based model of the praying mantis. In S. Nolfi, G. Baldassarre, R. Calabretta, J. Hallam, D. Marocco, O. Miglino, J.-A. Meyer, & D. Parisi (Eds.), From Animals to Animats 9: Proceedings of the Ninth International Conference on Simulation of Adaptive Behaviour, volume LNAI 4095 (pp. 211–223). Berlin, Germany: Springer Verlag.

  • Pezzulo, G., & Calvi, G. (2006b). Toward a perceptual symbol system. In Proceedings of the Sixth International Conference on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems. Lund University Cognitive Science Studies 118.

  • Pezzulo, G., & Calvi, G. (2007). Schema-based design and the akira schema language: An overview. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Anticipatory behavior in adaptive learning systems: Advances in anticipatory processing, LNAI 4520. Springer.

  • Pezzulo, G., Calvi, G., Ognibene, D., & Lalia, D. (2005). Fuzzy-based schema mechanisms in akira. In CIMCA ’05: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (Vol. 2, pp. 146–152). Washington, DC, USA: IEEE Computer Society.

  • Pezzulo, G., & Castelfranchi, C. (2007). The symbol detachment problem. Cognitive Processing, 8(2), 115–131.

    Article  Google Scholar 

  • Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge, MA: MIT Press.

    Google Scholar 

  • Piaget, J. (1954). The construction of reality in the child. Ballentine.

  • Piaget, J. (1985). Equilibration of cognitive structures. University of Chicago Press.

  • Pierce, D. M., & Kuipers, B. J. (1997). Map learning with uninterpreted sensors and effectors. Artificial Intelligence, 92, 169–227.

    Article  MATH  Google Scholar 

  • Popper, K. R. (1996). Alles Leben ist Problemlösen. Über Erkenntnis, Geschichte und Politik. München: R. Piper-Verlag.

    Google Scholar 

  • Port, R., & van Gelder, T. (1995). Mind as motion: Explorations in the dynamics of cognition. Cambridge MA: MIT Press.

    Google Scholar 

  • Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action (pp. 167–201). Berlin: Springer Verlag.

    Google Scholar 

  • Prinz, W. (2005). An ideomotor approach to imitation. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From neuroscience to social science (Vol. 1, pp. 141–156). Cambridge, MA: MIT Press.

    Google Scholar 

  • Rainer, G., Rao, S. C., & Miller, E. K. (1999). Prospective coding for objects in primate prefrontal cortex. The Journal of Neuroscience, 19(13), 5493–5505.

    Google Scholar 

  • Rao, R. P., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.

    Article  Google Scholar 

  • Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature Neuroscience, 2(11), 1019–1025.

    Article  Google Scholar 

  • Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194.

    Article  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  Google Scholar 

  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3.

  • Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661–670.

    Article  Google Scholar 

  • Roitblat, H. (1980). Codes and coding processes in pigeon short-term memory. Animal Learning & Behavior, 8, 341–351.

    Google Scholar 

  • Rosen, R. (1985). Anticipatory systems. Pergamon Press.

  • Rosenblueth, A., Wiener, N., & Bigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science, 10(1), 18–24.

    Article  Google Scholar 

  • Roy, D. (2005). Semiotic schemas: A framework for grounding language in action and perception. Artificial Intelligence, 167(1–2), 170–205.

    Article  Google Scholar 

  • Roy, D., yuh Hsiao, K., Mavridis, N., & Gorniak, P. (2006). Ripley, hand me the cup: Sensorimotor representations for grounding word meaning. In International Conference of Automatic Speech Recognition and Understanding.

  • Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: A pet investigation of agency. Nature Neuroscience, 4(5), 546–550.

    Google Scholar 

  • Ryle, G. (1949). The concept of mind. New York: Barnes and Noble.

    Google Scholar 

  • Scassellati, B. (1999). Imitation and mechanisms of joint attention: A developmental structure for building social skills on a humanoid robot. Lecture Notes in Computer Science, 1562, 176–195.

    Article  Google Scholar 

  • Schenck, W., & Moller, R. (2006). Learning a visual forward model for a robot camera head. In M. Butz, O. Sigaud, G. Pezzulo, & G. Baldassarre (Eds.), Proceedings of the Third Workshop on Anticipatory Behavior in Adaptive Learning Systems (ABiALS 2006).

  • Schmidhuber, J. (1991). Adaptive confidence and adaptive curiosity. Technical Report FKI-149-91, Institut für Informatik, Technische Universitat.

  • Schmidhuber, J. (2002). Exploring the predictable. In S. Ghosh & S. Tsutsui (Eds.), Advances in evolutionary computing (pp. 579–612). Springer.

  • Schomaker, L. (2004). Anticipation in cybernetic systems: A case against mindless anti-representationalism. In IEEE lntemational Conference on Systems, Man and Cybernetics, pp. 2037–2045.

  • Schöner, G. (2002). Dynamical systems approaches to neural systems and behavior. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social & behavioral sciences (pp. 10571–10575). Pergamon: Oxford.

    Google Scholar 

  • Schöner, G., & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239, 1513–1520.

    Article  Google Scholar 

  • Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211–218.

    Article  Google Scholar 

  • Schultz, W., Dayan, P., & Montague, P. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.

    Article  Google Scholar 

  • Shanahan, M. (2005). Cognition, action selection, and inner rehearsal. In Proceedings IJCAI 2005 Workshop on Modelling Natural Action Selection, pp. 92–99.

  • Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 1(7), 261–267.

    Article  Google Scholar 

  • Sloman, A. (2006). Orthogonal recombinable competences acquired by altricial species. Technical report, University of Birmingham.

  • Steels, L. (2003). Intelligence with representation. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 361(1811), 2381–2395.

    Article  MathSciNet  Google Scholar 

  • Stephan, V., & Gross, H.-M. (2003). Visuomotor anticipation – a powerful approach to behavior-driven perception. Künstliche Intelligenz, 17(2), 12–17.

    Google Scholar 

  • Stern, D. (2004). The present moment. New York, London: W.W. Norton & Company.

    Google Scholar 

  • Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9–44.

    Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135–170.

    Article  Google Scholar 

  • Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks, 16(1), 11–23.

    Article  Google Scholar 

  • Tani, J., Ito, M., & Sugita, Y. (2004). Self-organization of distributedly represented multiple behavior schemata in a mirror system: Reviews of robot experiments using rnnpb. Neural Networks, 17(8–9), 1273–1289.

    Article  Google Scholar 

  • Tani, J., & Nolfi, S. (1999). Learning to perceive the world as articulated: An approach for hierarchical learning in sensory-motor systems. Neural Networks, 12(7–8), 1131–1141.

    Article  Google Scholar 

  • Taylor, C. (1971). What is involved in a genetic psychology? In T. Mischel (Ed.), Cognitive development and epistemology (pp. 393–416). New York: Academic Press.

    Google Scholar 

  • Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of perception and action. MIT Press.

  • Tinbergen, N. (1951). The study of instinct. New York: Oxford University Press.

    Google Scholar 

  • Tolman, E. (1932). Purposive behavior in animals and men. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Tomasello, M., Kruger, A., & Ratner, H. (1993). Cultural learning. Behavioral and Brain Sciences, 16, 495–552.

    Article  Google Scholar 

  • Toussaint, M. (2006). A sensorimotor map: Modulating lateral interactions for anticipation and planning. Neural Computation, 18(5), 1132–1155.

    Article  MATH  Google Scholar 

  • Tsoukalas, L. H. (1998). Neurofuzzy approaches to anticipation: A new paradigm for intelligent systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 28(4), 573–582.

    Article  Google Scholar 

  • van Gelder, T. (1995). What might cognition be, if not computation? Journal of Philosophy, 92(7), 345–381.

    Article  Google Scholar 

  • Varela, F. J., Thompson, E. T., & Rosch, E. (1992). The embodied mind: Cognitive science and human experience. The MIT Press.

  • Vaughan, R. T., & Zuluaga, M. (2006). Use your illusion: Sensorimotor self-simulation allows complex agents to plan with incomplete self-knowledge. In Proceedings of the International Conference on Simulation of Adaptive Behaviour (SAB), Rome, Italy.

  • Vijayakumar, S., D’souza, A., & Schaal, S. (2005). Incremental online learning in high dimensions. Neural Computation, 17(12), 2602–2634.

    Article  MathSciNet  Google Scholar 

  • von Holst, E., & Mittelstaedt, H. (1950). Das reafferenzprinzip. Naturwissenschaften, 37, 464–476.

    Article  Google Scholar 

  • von Uexküll, J. (1985). Environment [umwelt] and inner world of animals. In G. M. Burghardt (Ed.), Foundations of comparative ethology (pp. 222–245). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Weng, J., & Zhang, Y. (2002). Developmental robots: A new paradigm. In Proceedings Second International Workshop on Epigenetic Robotics.

  • Wickens, J. (1997). Basal ganglia: Structure and computations. Network: Computation in Neural Systems, 8, R77–R109.

    Article  Google Scholar 

  • Witkowski, M. (2003). Towards a four factor theory of anticipatory learning. In M. Butz, O. Sigaud, & P. Gérard (Eds.), Anticipatory behavior in adaptive learning systems, LNAI 2684 (pp. 66–85). Springer.

  • Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.

    Google Scholar 

  • Wohlschlger, A., Gattis, M., & Bekkering, H. (2003). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society of London, 358, 501–515.

    Article  Google Scholar 

  • Wolfe, B., James, M. R., & Singh, S. (2005). Learning predictive state representations in dynamical systems without reset. In ICML ’05: Proceedings of the 22nd International Conference on Machine learning (pp. 980–987). New York, NY, USA: ACM Press.

  • Wolfe, B., & Singh, S. (2006). Predictive state representations with options. In ICML ’06: Proceedings of the 23rd International Conference on Machine learning (pp. 1025–1032). New York, NY, USA: ACM Press.

  • Wolpert, D. M. (1997). Computational approaches to motor control. Trends in Cognitive Sciences, 1, 209–216.

    Article  Google Scholar 

  • Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1431), 593–602.

    Article  Google Scholar 

  • Wolpert, D., & Flanagan, J. (2001). Motor prediction. Current Biology, 11, R729–R732.

    Article  Google Scholar 

  • Wolpert, D. M., Gharamani, Z., & Jordan, M. (1995). An internal model for sensorimotor integration. Science, 269, 1179–1182.

    Article  Google Scholar 

  • Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.

    Article  Google Scholar 

  • Ziemke, T., Jirenhed, D.-A., & Hesslow, G. (2005). Internal simulation of perception: A minimal neuro-robotic model. Neurocomputing, 68, 85–104.

    Article  Google Scholar 

  • Zlatev, J., & Balkenius, C. (2001). Introduction: Why “epigenetic robotics”? In Proceedings of the First International Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems (Vol. 85, pp. 1–4). Lund University Cognitive Studies.

  • Zlatev, J., Persson, T., & Gardenfors, P. (2005). Bodily mimesis as ’the missing link’ in human cognitive evolution. Technical Report LUCS121, Lund University Cognitive Science, Lund, Sweden.

Download references

Acknowledgments

This work is supported by the EU-funded projects MindRACES: from Reactive to Anticipatory Cognitive Embodied Systems (FP6-511931) and euCognition: The European Network for the Advancement of Artificial Cognitive Systems (FP6-26408). The author wants to thank Prof. Cristiano Castelfranchi for countless discussions and insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pezzulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pezzulo, G. Coordinating with the Future: The Anticipatory Nature of Representation. Minds & Machines 18, 179–225 (2008). https://doi.org/10.1007/s11023-008-9095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-008-9095-5

Keywords

Navigation