Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2009

01-09-2009 | Original Article

Cognitive and neuronal processes involved in sequential generation of general and specific mental images

Auteurs: Simona Gardini, Cesare Cornoldi, Rossana De Beni, Annalena Venneri

Gepubliceerd in: Psychological Research | Uitgave 5/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Mental image generation is a complex process mediated by dynamically interrelated components, e.g. image generation and image enrichment of details. This study investigated the cognitive and neural correlates of sequential image generation. An event-related fMRI experiment was carried out in which general and specific images had to be generated sequentially in two different positions. Participants had to generate either a general image first and then a specific one or a specific image first and then a general one, in response to the same word-stimulus. Generation times showed that specific images took shorter to be produced if they had been preceded by the generation of a general image. The fMRI results showed that position of generation and type of image was associated with different patterns of neurofunctional change. When an image was generated as first, areas of activation were found in the parahippocampal, fusiform and occipital regions. These are areas associated with memory retrieval and visual processing. When an image was generated as second, significant activations were found in superior temporal and precuneus areas, brain structures that are involved in the storage of visual memory for object shapes and imagery, respectively. The generation of a general image was supported by frontal areas and by the precuneus. The generation of a specific image involved frontal and thalamic areas (structures associated with visual processing of details) and the posterior cingulate cortex. When shifting from a specific image to a general one, a higher level of activity was found in the middle frontal gyrus involved in global visuo-spatial processing, suggesting that the generation of specific images required the retrieval of an object’s global shape. Altogether, these data suggest that the sequential generation of different types of image is associated with discrete processes but also shares common cognitive and neural components.
Literatuur
go back to reference Burianova, H., & Grady, C. L. (2007). Common and unique neural activations in autobiographical, episodic, and semantic retrieval. Journal of Cognitive Neuroscience, 19, 1520–1534.PubMedCrossRef Burianova, H., & Grady, C. L. (2007). Common and unique neural activations in autobiographical, episodic, and semantic retrieval. Journal of Cognitive Neuroscience, 19, 1520–1534.PubMedCrossRef
go back to reference Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. NeuroImage, 2001(14), 439–453.CrossRef Burgess, N., Maguire, E. A., Spiers, H. J., & O’Keefe, J. (2001). A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. NeuroImage, 2001(14), 439–453.CrossRef
go back to reference Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.PubMedCrossRef Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.PubMedCrossRef
go back to reference Christoff, K., Ream, J. M., Geddes, L. P., & Gabrieli, J. D. (2003). Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behavioral Neuroscience, 117, 1161–1168.PubMedCrossRef Christoff, K., Ream, J. M., Geddes, L. P., & Gabrieli, J. D. (2003). Evaluating self-generated information: anterior prefrontal contributions to human cognition. Behavioral Neuroscience, 117, 1161–1168.PubMedCrossRef
go back to reference Cocude, M., Charlot, V., & Denis, M. (1997). Latency and duration of visual mental images in normal and depressed subjects. Journal of Mental Imagery, 21, 127–142. Cocude, M., Charlot, V., & Denis, M. (1997). Latency and duration of visual mental images in normal and depressed subjects. Journal of Mental Imagery, 21, 127–142.
go back to reference Cocude, M., & Denis, M. (1988). Measuring the temporal characteristics of visual images. Journal of Mental Imagery, 12, 89–101. Cocude, M., & Denis, M. (1988). Measuring the temporal characteristics of visual images. Journal of Mental Imagery, 12, 89–101.
go back to reference Cornoldi, C., De Beni, R., & Pra Baldi, A. (1989). Generation and retrieval of general, specific and autobiographic images representing concrete nouns. Acta Psychologica, 72, 25–39.CrossRef Cornoldi, C., De Beni, R., & Pra Baldi, A. (1989). Generation and retrieval of general, specific and autobiographic images representing concrete nouns. Acta Psychologica, 72, 25–39.CrossRef
go back to reference Cornoldi, C., & Vecchi, T. (2003). Visuospatial working memory and individual differences. Hove: Psychology Press. Cornoldi, C., & Vecchi, T. (2003). Visuospatial working memory and individual differences. Hove: Psychology Press.
go back to reference D’Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., et al. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35, 725–730.PubMedCrossRef D’Esposito, M., Detre, J. A., Aguirre, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., et al. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35, 725–730.PubMedCrossRef
go back to reference De Beni, R., & Pazzaglia, F. (1995). Memory for different kinds of mental images: role of contextual and autobiographic variables. Neuropsychologia, 11, 1359–1371.CrossRef De Beni, R., & Pazzaglia, F. (1995). Memory for different kinds of mental images: role of contextual and autobiographic variables. Neuropsychologia, 11, 1359–1371.CrossRef
go back to reference De Beni, R., Pazzaglia, F., & Gardini, S. (2006). The generation and maintenance of visual mental images: Evidence from image type and aging. Brain and Cognition, 63, 271–278.PubMed De Beni, R., Pazzaglia, F., & Gardini, S. (2006). The generation and maintenance of visual mental images: Evidence from image type and aging. Brain and Cognition, 63, 271–278.PubMed
go back to reference Fletcher, P. C., Frith, C. D., Baker, S. C., Shallice, T., Frackowiak, R. S., & Dolan, R. J. (1995). The mind’s eye—precuneus activation in memory-related imagery. NeuroImage, 2, 195–200.PubMedCrossRef Fletcher, P. C., Frith, C. D., Baker, S. C., Shallice, T., Frackowiak, R. S., & Dolan, R. J. (1995). The mind’s eye—precuneus activation in memory-related imagery. NeuroImage, 2, 195–200.PubMedCrossRef
go back to reference Fujii, T., Suzuki, M., Okuda, J., Ohtake, H., Tanji, K., Yamaguchi, K., et al. (2004). Neural correlates of context memory with real-world events. NeuroImage, 21, 1596–1603.PubMedCrossRef Fujii, T., Suzuki, M., Okuda, J., Ohtake, H., Tanji, K., Yamaguchi, K., et al. (2004). Neural correlates of context memory with real-world events. NeuroImage, 21, 1596–1603.PubMedCrossRef
go back to reference Gardini, S., Cornoldi, C., De Beni, R., & Venneri, A. (2006). Left mediotemporal structures mediate the retrieval of episodic autobiographical mental images. NeuroImage, 30, 645–655.PubMedCrossRef Gardini, S., Cornoldi, C., De Beni, R., & Venneri, A. (2006). Left mediotemporal structures mediate the retrieval of episodic autobiographical mental images. NeuroImage, 30, 645–655.PubMedCrossRef
go back to reference Gardini, S., De Beni, R., Cornoldi, C., Bromiley, A., & Venneri, A. (2005). Different neuronal pathways support the generation of general and specific mental images. NeuroImage, 27, 544–552.PubMedCrossRef Gardini, S., De Beni, R., Cornoldi, C., Bromiley, A., & Venneri, A. (2005). Different neuronal pathways support the generation of general and specific mental images. NeuroImage, 27, 544–552.PubMedCrossRef
go back to reference Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P., & Gore, J. C. (1997). Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Current Biology, 7, 645–651.PubMedCrossRef Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P., & Gore, J. C. (1997). Levels of categorization in visual recognition studied using functional magnetic resonance imaging. Current Biology, 7, 645–651.PubMedCrossRef
go back to reference Gorno-Tempini, M. L., & Price, C. J. (2001). Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain, 124, 2087–2097.PubMedCrossRef Gorno-Tempini, M. L., & Price, C. J. (2001). Identification of famous faces and buildings: a functional neuroimaging study of semantically unique items. Brain, 124, 2087–2097.PubMedCrossRef
go back to reference Grabowski, T. J., Damasio, H., & Damasio, A. R. (1998). Premotor and Prefrontal correlates of category-related lexical retrieval. NeuroImage, 7, 232–243.PubMedCrossRef Grabowski, T. J., Damasio, H., & Damasio, A. R. (1998). Premotor and Prefrontal correlates of category-related lexical retrieval. NeuroImage, 7, 232–243.PubMedCrossRef
go back to reference Hasegawa, I., Hayashi, T., & Miyashita, Y. (1999). Memory retrieval under the control of the prefrontal cortex. Annual Medicine, 31, 380–387.CrossRef Hasegawa, I., Hayashi, T., & Miyashita, Y. (1999). Memory retrieval under the control of the prefrontal cortex. Annual Medicine, 31, 380–387.CrossRef
go back to reference Hayes, S. M., Ryan, L., Schnyer, D. M., & Nadel, L. (2004). An fMRI study of episodic memory: retrieval of object, spatial, and temporal information. Behavioral Neuroscience, 118, 885–896.PubMedCrossRef Hayes, S. M., Ryan, L., Schnyer, D. M., & Nadel, L. (2004). An fMRI study of episodic memory: retrieval of object, spatial, and temporal information. Behavioral Neuroscience, 118, 885–896.PubMedCrossRef
go back to reference Hein, G., Doehrmann, O., Müller, N. G., Kaiser, J., Muckli, L., & Naumer, M. J. (2007). Object familiarity and semantic congruency modulate responses in cortical audiovisual integration areas. Journal of Neuroscience, 27, 7881–7887.PubMedCrossRef Hein, G., Doehrmann, O., Müller, N. G., Kaiser, J., Muckli, L., & Naumer, M. J. (2007). Object familiarity and semantic congruency modulate responses in cortical audiovisual integration areas. Journal of Neuroscience, 27, 7881–7887.PubMedCrossRef
go back to reference Helstrup, T., Cornoldi, C., & De Beni, R. (1997). Mental images: Specific or general, personal or impersonal? Scandinavian Journal of Psychology, 38, 189–197.CrossRef Helstrup, T., Cornoldi, C., & De Beni, R. (1997). Mental images: Specific or general, personal or impersonal? Scandinavian Journal of Psychology, 38, 189–197.CrossRef
go back to reference Hofland, K., & Johansson, S. (1982). Word frequencies in British and American English. Bergen: Norwegian Computing Centre for the Humanities. Hofland, K., & Johansson, S. (1982). Word frequencies in British and American English. Bergen: Norwegian Computing Centre for the Humanities.
go back to reference Ishai, A., Ungerleider, L. G., & Haxby, J. V. (2000). Distributed neural systems of the generation of visual images. Neuron, 28, 979–990.PubMedCrossRef Ishai, A., Ungerleider, L. G., & Haxby, J. V. (2000). Distributed neural systems of the generation of visual images. Neuron, 28, 979–990.PubMedCrossRef
go back to reference James, W. (1890). Principles of psychology. New York: Holt. James, W. (1890). Principles of psychology. New York: Holt.
go back to reference Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge: MIT Press. Kosslyn, S. M. (1994). Image and brain: The resolution of the imagery debate. Cambridge: MIT Press.
go back to reference Kotchoubey, B., Wascher, E., & Verleger, R. (1997). Shifting attention between global features and small details: An event-related potential study. Biological Psychology, 20, 25–50.CrossRef Kotchoubey, B., Wascher, E., & Verleger, R. (1997). Shifting attention between global features and small details: An event-related potential study. Biological Psychology, 20, 25–50.CrossRef
go back to reference LaBerge, D. (2000). Networks of attention. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences: Vol II (pp. 711–724). Cambridge: Bradford Book. LaBerge, D. (2000). Networks of attention. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences: Vol II (pp. 711–724). Cambridge: Bradford Book.
go back to reference Lawson, M. L., Crewther, S. G., Junghans, B. M., Crewther, D. P., & Kiely, P. M. (2005). Changes in ocular accommodation when shifting between global and local attention. Clinical and Experimental Optometry, 88, 28–32.PubMedCrossRef Lawson, M. L., Crewther, S. G., Junghans, B. M., Crewther, D. P., & Kiely, P. M. (2005). Changes in ocular accommodation when shifting between global and local attention. Clinical and Experimental Optometry, 88, 28–32.PubMedCrossRef
go back to reference Lee, T. S., Mumford, D., Romero, R., & Lamme, V. A. (1998). The role of the primary visual cortex in higher level vision. Vision Research, 38, 2429–2454.PubMedCrossRef Lee, T. S., Mumford, D., Romero, R., & Lamme, V. A. (1998). The role of the primary visual cortex in higher level vision. Vision Research, 38, 2429–2454.PubMedCrossRef
go back to reference Liotti, M., Fox, P. T., & LaBerge, D. (1994). PET measurements of attention to closely spaced visual shapes. Society for Neuroscience Abstracts, 20, 354. Liotti, M., Fox, P. T., & LaBerge, D. (1994). PET measurements of attention to closely spaced visual shapes. Society for Neuroscience Abstracts, 20, 354.
go back to reference Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G., & O’Keefe, J. (1998). Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive Neuroscience, 10, 61–76.PubMedCrossRef Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G., & O’Keefe, J. (1998). Knowing where things are parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive Neuroscience, 10, 61–76.PubMedCrossRef
go back to reference Mellet, E., Tzourio, N., Crivello, F., Joliot, M., Denis, M., & Mazoyer, B. (1996). Functional anatomy of spatial mental imagery generated from verbal instructions. Journal of Neuroscience, 16, 6504–6512.PubMed Mellet, E., Tzourio, N., Crivello, F., Joliot, M., Denis, M., & Mazoyer, B. (1996). Functional anatomy of spatial mental imagery generated from verbal instructions. Journal of Neuroscience, 16, 6504–6512.PubMed
go back to reference Paivio, A. (2006). Mind and its evolution: A dual coding theoretical approach. Mahwah: Erlbaum. Paivio, A. (2006). Mind and its evolution: A dual coding theoretical approach. Mahwah: Erlbaum.
go back to reference Petrides, M., & Pandya, D. N. (1999). Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. European Journal of Neuroscience, 11, 1011–1036.PubMedCrossRef Petrides, M., & Pandya, D. N. (1999). Dorsolateral prefrontal cortex: Comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. European Journal of Neuroscience, 11, 1011–1036.PubMedCrossRef
go back to reference Powell, H. W., Guye, M., Parker, G. J., Symms, M. R., Boulby, P., Koepp, M. J., et al. (2004). Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus. NeuroImage, 22, 740–747.PubMedCrossRef Powell, H. W., Guye, M., Parker, G. J., Symms, M. R., Boulby, P., Koepp, M. J., et al. (2004). Noninvasive in vivo demonstration of the connections of the human parahippocampal gyrus. NeuroImage, 22, 740–747.PubMedCrossRef
go back to reference Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.CrossRef Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.CrossRef
go back to reference Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 12, 1657–1661.CrossRef Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 12, 1657–1661.CrossRef
Metagegevens
Titel
Cognitive and neuronal processes involved in sequential generation of general and specific mental images
Auteurs
Simona Gardini
Cesare Cornoldi
Rossana De Beni
Annalena Venneri
Publicatiedatum
01-09-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 5/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-008-0175-1

Andere artikelen Uitgave 5/2009

Psychological Research 5/2009 Naar de uitgave