Skip to main content
Top
Gepubliceerd in:

01-12-2010 | Original Paper

Using Perceptual Signatures to Define and Dissociate Condition-Specific Neural Etiology: Autism and Fragile X Syndrome as Model Conditions

Auteurs: Armando Bertone, Julie Hanck, Cary Kogan, Avi Chaudhuri, Kim Cornish

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 12/2010

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The functional link between genetic alteration and behavioral end-state is rarely straightforward and never linear. Cases where neurodevlopmental conditions defined by a distinct genetic etiology share behavioral phenotypes are exemplary, as is the case for autism and Fragile X Syndrome (FXS). In this paper and its companion paper, we propose a method for assessing the functional link between genotype and neural alteration across these target conditions by comparing their perceptual signatures. In the present paper, we discuss how such signatures can be used to (1) define and differentiate various aspects of neural functioning in autism and FXS, and subsequently, (2) to infer candidate causal (genetic) mechanisms based on such signatures (see companion paper, this issue).
Literatuur
go back to reference Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews. Genetics, 9(5), 341–355.CrossRefPubMed Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews. Genetics, 9(5), 341–355.CrossRefPubMed
go back to reference Armstrong, V., Maurer, D., et al. (2009). Sensitivity to first- and second-order motion and form in children and adults. Vision Research, 49(23), 2774–2781.CrossRefPubMed Armstrong, V., Maurer, D., et al. (2009). Sensitivity to first- and second-order motion and form in children and adults. Vision Research, 49(23), 2774–2781.CrossRefPubMed
go back to reference Ashida, H., Lingnau, A., et al. (2007). FMRI adaptation reveals separate mechanisms for first-order and second-order motion. Journal of Neurophysiology, 97(2), 1319–1325.CrossRefPubMed Ashida, H., Lingnau, A., et al. (2007). FMRI adaptation reveals separate mechanisms for first-order and second-order motion. Journal of Neurophysiology, 97(2), 1319–1325.CrossRefPubMed
go back to reference Atkinson, J., Braddick, O., et al. (2006). Dorsal-stream motion processing deficits persist into adulthood in Williams syndrome. Neuropsychologia, 44(5), 828–833.CrossRefPubMed Atkinson, J., Braddick, O., et al. (2006). Dorsal-stream motion processing deficits persist into adulthood in Williams syndrome. Neuropsychologia, 44(5), 828–833.CrossRefPubMed
go back to reference Atkinson, J., King, J., et al. (1997). A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport, 8(8), 1919–1922.CrossRefPubMed Atkinson, J., King, J., et al. (1997). A specific deficit of dorsal stream function in Williams’ syndrome. Neuroreport, 8(8), 1919–1922.CrossRefPubMed
go back to reference Baker, C. L., Jr. (1999). Central neural mechanisms for detecting second-order motion. Current Opinion in Neurobiology, 9(4), 461–466.CrossRefPubMed Baker, C. L., Jr. (1999). Central neural mechanisms for detecting second-order motion. Current Opinion in Neurobiology, 9(4), 461–466.CrossRefPubMed
go back to reference Baldassi, S., Pei, F., et al. (2009). Search superiority in autism within, but not outside the crowding regime. Vision Research, 49(16), 2151–2156.CrossRefPubMed Baldassi, S., Pei, F., et al. (2009). Search superiority in autism within, but not outside the crowding regime. Vision Research, 49(16), 2151–2156.CrossRefPubMed
go back to reference Baron-Cohen, S., Ashwin, E., et al. (2009). Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1377–1383.CrossRefPubMed Baron-Cohen, S., Ashwin, E., et al. (2009). Talent in autism: Hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1377–1383.CrossRefPubMed
go back to reference Behrmann, M., Thomas, C., et al. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10(6), 258–264.CrossRefPubMed Behrmann, M., Thomas, C., et al. (2006). Seeing it differently: Visual processing in autism. Trends in Cognitive Sciences, 10(6), 258–264.CrossRefPubMed
go back to reference Belmonte, M. K., & Bourgeron, T. (2006). Fragile X syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9(10), 1221–1225.CrossRefPubMed Belmonte, M. K., & Bourgeron, T. (2006). Fragile X syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9(10), 1221–1225.CrossRefPubMed
go back to reference Belmonte, M. K., Cook, E. H., Jr., et al. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9(7), 646–663.PubMed Belmonte, M. K., Cook, E. H., Jr., et al. (2004). Autism as a disorder of neural information processing: Directions for research and targets for therapy. Molecular Psychiatry, 9(7), 646–663.PubMed
go back to reference Bertone, A., & Faubert, J. (2006). Demonstrations of decreased sensitivity to complex motion information not enough to propose an autism-specific neural etiology. Journal of Autism and Developmental Disorders, 36(1), 55–64.CrossRefPubMed Bertone, A., & Faubert, J. (2006). Demonstrations of decreased sensitivity to complex motion information not enough to propose an autism-specific neural etiology. Journal of Autism and Developmental Disorders, 36(1), 55–64.CrossRefPubMed
go back to reference Bertone, A., Hanck, J., et al. (2008). Development of static and dynamic perception for luminance-defined and texture-defined information. Neuroreport, 19(2), 225–228.CrossRefPubMed Bertone, A., Hanck, J., et al. (2008). Development of static and dynamic perception for luminance-defined and texture-defined information. Neuroreport, 19(2), 225–228.CrossRefPubMed
go back to reference Bertone, A., Mottron, L., et al. (2003). Motion perception in autism: A “complex” issue. Journal of Cognitive Neuroscience, 15(2), 218–225.CrossRefPubMed Bertone, A., Mottron, L., et al. (2003). Motion perception in autism: A “complex” issue. Journal of Cognitive Neuroscience, 15(2), 218–225.CrossRefPubMed
go back to reference Bertone, A., Mottron, L., et al. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(Pt 10), 2430–2441.CrossRefPubMed Bertone, A., Mottron, L., et al. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(Pt 10), 2430–2441.CrossRefPubMed
go back to reference Blake, R., Turner, L. M., et al. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151–157.CrossRefPubMed Blake, R., Turner, L. M., et al. (2003). Visual recognition of biological motion is impaired in children with autism. Psychological Science, 14(2), 151–157.CrossRefPubMed
go back to reference Bonnel, A., Mottron, L., et al. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235.CrossRefPubMed Bonnel, A., Mottron, L., et al. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235.CrossRefPubMed
go back to reference Braddick, O., Atkinson, J., et al. (2003). Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia, 41(13), 1769–1784.CrossRefPubMed Braddick, O., Atkinson, J., et al. (2003). Normal and anomalous development of visual motion processing: Motion coherence and ‘dorsal-stream vulnerability’. Neuropsychologia, 41(13), 1769–1784.CrossRefPubMed
go back to reference Brosseau-Lachaine, O., Gagnon, I., et al. (2008). Mild traumatic brain injury induces prolonged visual processing deficits in children. Brain Injury, 22(9), 657–668.CrossRefPubMed Brosseau-Lachaine, O., Gagnon, I., et al. (2008). Mild traumatic brain injury induces prolonged visual processing deficits in children. Brain Injury, 22(9), 657–668.CrossRefPubMed
go back to reference Casanova, M. F., Buxhoeveden, D. P., et al. (2002). Minicolumnar pathology in autism. Neurology, 58(3), 428–432.PubMed Casanova, M. F., Buxhoeveden, D. P., et al. (2002). Minicolumnar pathology in autism. Neurology, 58(3), 428–432.PubMed
go back to reference Cavanagh, P., & Mather, G. (1989). Motion: The long and short of it. Spatial Vision, 4(2–3), 103–129.CrossRefPubMed Cavanagh, P., & Mather, G. (1989). Motion: The long and short of it. Spatial Vision, 4(2–3), 103–129.CrossRefPubMed
go back to reference Chen, Y., Levy, D. L., et al. (2003). Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. American Journal of Psychiatry, 160(10), 1795–1801.CrossRefPubMed Chen, Y., Levy, D. L., et al. (2003). Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. American Journal of Psychiatry, 160(10), 1795–1801.CrossRefPubMed
go back to reference Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America. A Optics and Image Science, 5(11), 1986–2007.CrossRef Chubb, C., & Sperling, G. (1988). Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. Journal of the Optical Society of America. A Optics and Image Science, 5(11), 1986–2007.CrossRef
go back to reference Churchill, J. D., Beckel-Mitchener, A., et al. (2002). Effects of Fragile X syndrome and an FMR1 knockout mouse model on forebrain neuronal cell biology. Microscopy Research and Technique, 57(3), 156–158.CrossRefPubMed Churchill, J. D., Beckel-Mitchener, A., et al. (2002). Effects of Fragile X syndrome and an FMR1 knockout mouse model on forebrain neuronal cell biology. Microscopy Research and Technique, 57(3), 156–158.CrossRefPubMed
go back to reference Clifford, S., Dissanayake, C., et al. (2007). Autism spectrum phenotype in males and females with fragile X full mutation and premutation. Journal of Autism and Developmental Disorders, 37(4), 738–747.CrossRefPubMed Clifford, S., Dissanayake, C., et al. (2007). Autism spectrum phenotype in males and females with fragile X full mutation and premutation. Journal of Autism and Developmental Disorders, 37(4), 738–747.CrossRefPubMed
go back to reference Cohen, I. L. (1994). An artificial neural network analogue of learning in autism. Biological Psychiatry, 36(1), 5–20.CrossRefPubMed Cohen, I. L. (1994). An artificial neural network analogue of learning in autism. Biological Psychiatry, 36(1), 5–20.CrossRefPubMed
go back to reference Comery, T. A., Harris, J. B., et al. (1997). Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5401–5404.CrossRefPubMed Comery, T. A., Harris, J. B., et al. (1997). Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94(10), 5401–5404.CrossRefPubMed
go back to reference Cornish, K. M., Munir, F., et al. (1999). Spatial cognition in males with Fragile-X syndrome: Evidence for a neuropsychological phenotype. Cortex, 35(2), 263–271.CrossRefPubMed Cornish, K. M., Munir, F., et al. (1999). Spatial cognition in males with Fragile-X syndrome: Evidence for a neuropsychological phenotype. Cortex, 35(2), 263–271.CrossRefPubMed
go back to reference Cornish, K. M., Turk, J., et al. (2004). Annotation: Deconstructing the attention deficit in fragile X syndrome: A developmental neuropsychological approach. Journal of Child Psychology and Psychiatry, 45(6), 1042–1053.CrossRefPubMed Cornish, K. M., Turk, J., et al. (2004). Annotation: Deconstructing the attention deficit in fragile X syndrome: A developmental neuropsychological approach. Journal of Child Psychology and Psychiatry, 45(6), 1042–1053.CrossRefPubMed
go back to reference Cornish, K., Turk, J., et al. (2008). The fragile X continuum: New advances and perspectives. Journal of Intellectual Disability Research, 52(Pt 6), 469–482.CrossRefPubMed Cornish, K., Turk, J., et al. (2008). The fragile X continuum: New advances and perspectives. Journal of Intellectual Disability Research, 52(Pt 6), 469–482.CrossRefPubMed
go back to reference Del Viva, M. M., Igliozzi, R., et al. (2006). Spatial and motion integration in children with autism. Vision Research, 46(8–9), 1242–1252.CrossRefPubMed Del Viva, M. M., Igliozzi, R., et al. (2006). Spatial and motion integration in children with autism. Vision Research, 46(8–9), 1242–1252.CrossRefPubMed
go back to reference Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.PubMed Derrington, A. M., & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology, 357, 219–240.PubMed
go back to reference Dumoulin, S. O., Baker, C. L., Jr., et al. (2003). Cortical specialization for processing first- and second-order motion. Cerebral Cortex, 13(12), 1375–1385.CrossRefPubMed Dumoulin, S. O., Baker, C. L., Jr., et al. (2003). Cortical specialization for processing first- and second-order motion. Cerebral Cortex, 13(12), 1375–1385.CrossRefPubMed
go back to reference Eckert, M. A., Galaburda, A. M., et al. (2006). The neurobiology of Williams syndrome: Cascading influences of visual system impairment? Cellular and Molecular Life Sciences, 63(16), 1867–1875.CrossRefPubMed Eckert, M. A., Galaburda, A. M., et al. (2006). The neurobiology of Williams syndrome: Cascading influences of visual system impairment? Cellular and Molecular Life Sciences, 63(16), 1867–1875.CrossRefPubMed
go back to reference Farzin, F., Whitney, D., et al. (2008). Contrast detection in infants with fragile X syndrome. Vision Research, 48(13), 1471–1478.CrossRefPubMed Farzin, F., Whitney, D., et al. (2008). Contrast detection in infants with fragile X syndrome. Vision Research, 48(13), 1471–1478.CrossRefPubMed
go back to reference Franklin, A., Sowden, P., et al. (2010). Reduced chromatic discrimination in children with autism spectrum disorders. Developmental Science, 13(1), 188–200.CrossRefPubMed Franklin, A., Sowden, P., et al. (2010). Reduced chromatic discrimination in children with autism spectrum disorders. Developmental Science, 13(1), 188–200.CrossRefPubMed
go back to reference Freitag, C. M., Konrad, C., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 1480–1494.CrossRefPubMed Freitag, C. M., Konrad, C., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46(5), 1480–1494.CrossRefPubMed
go back to reference Greenough, W. T., Klintsova, A. Y., et al. (2001). Synaptic regulation of protein synthesis and the fragile X protein. Proceedings of the National Academy of Sciences of the United States of America, 98(13), 7101–7106.CrossRefPubMed Greenough, W. T., Klintsova, A. Y., et al. (2001). Synaptic regulation of protein synthesis and the fragile X protein. Proceedings of the National Academy of Sciences of the United States of America, 98(13), 7101–7106.CrossRefPubMed
go back to reference Gunn, A., Cory, E., et al. (2002). Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport, 13(6), 843–847.CrossRefPubMed Gunn, A., Cory, E., et al. (2002). Dorsal and ventral stream sensitivity in normal development and hemiplegia. Neuroreport, 13(6), 843–847.CrossRefPubMed
go back to reference Gustafsson, L. (1997a). Excessive lateral feedback synaptic inhibition may cause autistic characteristics. Journal of Autism and Developmental Disorders, 27(2), 219–220.CrossRefPubMed Gustafsson, L. (1997a). Excessive lateral feedback synaptic inhibition may cause autistic characteristics. Journal of Autism and Developmental Disorders, 27(2), 219–220.CrossRefPubMed
go back to reference Gustafsson, L. (1997b). Inadequate cortical feature maps: A neural circuit theory of autism. Biological Psychiatry, 42(12), 1138–1147.CrossRefPubMed Gustafsson, L. (1997b). Inadequate cortical feature maps: A neural circuit theory of autism. Biological Psychiatry, 42(12), 1138–1147.CrossRefPubMed
go back to reference Gustafsson, L. (2004). Comment on “disruption in the inhibitory architecture of the cell minicolumn: Implications for autism”. Neuroscientist, 10(3), 189–191.CrossRefPubMed Gustafsson, L. (2004). Comment on “disruption in the inhibitory architecture of the cell minicolumn: Implications for autism”. Neuroscientist, 10(3), 189–191.CrossRefPubMed
go back to reference Habak, C., & Faubert, J. (2000). Larger effect of aging on the perception of higher-order stimuli. Vision Research, 40(8), 943–950.CrossRefPubMed Habak, C., & Faubert, J. (2000). Larger effect of aging on the perception of higher-order stimuli. Vision Research, 40(8), 943–950.CrossRefPubMed
go back to reference Hansen, P. C., Stein, J. F., et al. (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? Neuroreport, 12(7), 1527–1530.CrossRefPubMed Hansen, P. C., Stein, J. F., et al. (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? Neuroreport, 12(7), 1527–1530.CrossRefPubMed
go back to reference Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.CrossRefPubMed Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5–25.CrossRefPubMed
go back to reference Heaton, P., Hermelin, B., et al. (1999). Can children with autistic spectrum disorders perceive affect in music? An experimental investigation. Psychological Medicine, 29(6), 1405–1410.CrossRefPubMed Heaton, P., Hermelin, B., et al. (1999). Can children with autistic spectrum disorders perceive affect in music? An experimental investigation. Psychological Medicine, 29(6), 1405–1410.CrossRefPubMed
go back to reference Herbert, M. R. (2005). Autism: A brain disorder, or a disorder that affects the brain. Clinical Neuropsychiatry, 2, 354–379. Herbert, M. R. (2005). Autism: A brain disorder, or a disorder that affects the brain. Clinical Neuropsychiatry, 2, 354–379.
go back to reference Irwin, S. A., Galvez, R., et al. (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cerebral Cortex, 10(10), 1038–1044.CrossRefPubMed Irwin, S. A., Galvez, R., et al. (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cerebral Cortex, 10(10), 1038–1044.CrossRefPubMed
go back to reference Irwin, S. A., Idupulapati, M., et al. (2002). Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. American Journal of Medical Genetics, 111(2), 140–146.CrossRefPubMed Irwin, S. A., Idupulapati, M., et al. (2002). Dendritic spine and dendritic field characteristics of layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. American Journal of Medical Genetics, 111(2), 140–146.CrossRefPubMed
go back to reference Irwin, S. A., Patel, B., et al. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: A quantitative examination. American Journal of Medical Genetics, 98(2), 161–167.CrossRefPubMed Irwin, S. A., Patel, B., et al. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: A quantitative examination. American Journal of Medical Genetics, 98(2), 161–167.CrossRefPubMed
go back to reference Kaiser, M. D., & Shiffrar, M. (2009). The visual perception of motion by observers with autism spectrum disorders: A review and synthesis. Psychonomic Bulletin & Review, 16(5), 761–777.CrossRef Kaiser, M. D., & Shiffrar, M. (2009). The visual perception of motion by observers with autism spectrum disorders: A review and synthesis. Psychonomic Bulletin & Review, 16(5), 761–777.CrossRef
go back to reference Keita, L., Mottron, L., & Bertone, A. (in press). Far visual acuity is unremarkable in autism: Do we need to focus on crowding? Autism Research. Keita, L., Mottron, L., & Bertone, A. (in press). Far visual acuity is unremarkable in autism: Do we need to focus on crowding? Autism Research.
go back to reference Keri, S., & Benedek, G. (2009). Visual pathway deficit in female fragile X premutation carriers: A potential endophenotype. Brain and Cognition, 69(2), 291–295.CrossRefPubMed Keri, S., & Benedek, G. (2009). Visual pathway deficit in female fragile X premutation carriers: A potential endophenotype. Brain and Cognition, 69(2), 291–295.CrossRefPubMed
go back to reference Keri, S., Must, A., et al. (2006). Development of visual motion perception in children of patients with schizophrenia and bipolar disorder: A follow-up study. Schizophrenia Research, 82(1), 9–14.CrossRefPubMed Keri, S., Must, A., et al. (2006). Development of visual motion perception in children of patients with schizophrenia and bipolar disorder: A follow-up study. Schizophrenia Research, 82(1), 9–14.CrossRefPubMed
go back to reference Kim, J., Doop, M. L., et al. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77(2–3), 299–307.CrossRefPubMed Kim, J., Doop, M. L., et al. (2005). Impaired visual recognition of biological motion in schizophrenia. Schizophrenia Research, 77(2–3), 299–307.CrossRefPubMed
go back to reference Kogan, C. S., Bertone, A., et al. (2004a). Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome. Neurology, 63(9), 1634–1639.PubMed Kogan, C. S., Bertone, A., et al. (2004a). Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome. Neurology, 63(9), 1634–1639.PubMed
go back to reference Kogan, C. S., Boutet, I., et al. (2004b). Differential impact of the FMR1 gene on visual processing in fragile X syndrome. Brain, 127(Pt 3), 591–601.PubMed Kogan, C. S., Boutet, I., et al. (2004b). Differential impact of the FMR1 gene on visual processing in fragile X syndrome. Brain, 127(Pt 3), 591–601.PubMed
go back to reference Kohonen, K. (1995). Self-organizing maps. Springer: New-York. Kohonen, K. (1995). Self-organizing maps. Springer: New-York.
go back to reference Koldewyn, K., Whitney, D., et al. (2009). The psychophysics of visual motion and global form processing in autism. Brain. Koldewyn, K., Whitney, D., et al. (2009). The psychophysics of visual motion and global form processing in autism. Brain.
go back to reference Larsson, J., Landy, M. S., et al. (2006). Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology, 95(2), 862–881.CrossRefPubMed Larsson, J., Landy, M. S., et al. (2006). Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology, 95(2), 862–881.CrossRefPubMed
go back to reference Loesch, D. Z., Huggins, R., et al. (1993). Genotype-phenotype relationships in fragile X syndrome: A family study. American Journal of Human Genetics, 53(5), 1064–1073.PubMed Loesch, D. Z., Huggins, R., et al. (1993). Genotype-phenotype relationships in fragile X syndrome: A family study. American Journal of Human Genetics, 53(5), 1064–1073.PubMed
go back to reference Losh, M., Sullivan, P. F., et al. (2008). Current developments in the genetics of autism: From phenome to genome. Journal of Neuropathology and Experimental Neurology, 67(9), 829–837.CrossRefPubMed Losh, M., Sullivan, P. F., et al. (2008). Current developments in the genetics of autism: From phenome to genome. Journal of Neuropathology and Experimental Neurology, 67(9), 829–837.CrossRefPubMed
go back to reference McClelland, J. L. (2000). The basis of hyperspecificity in autism: A preliminary suggestion based on properties of neural nets. Journal of Autism and Developmental Disorders, 30(5), 497–502.CrossRefPubMed McClelland, J. L. (2000). The basis of hyperspecificity in autism: A preliminary suggestion based on properties of neural nets. Journal of Autism and Developmental Disorders, 30(5), 497–502.CrossRefPubMed
go back to reference McKendrick, A. M., & Badcock, D. R. (2004). An analysis of the factors associated with visual field deficits measured with flickering stimuli in-between migraine. Cephalalgia, 24(5), 389–397.CrossRefPubMed McKendrick, A. M., & Badcock, D. R. (2004). An analysis of the factors associated with visual field deficits measured with flickering stimuli in-between migraine. Cephalalgia, 24(5), 389–397.CrossRefPubMed
go back to reference Milne, E., Swettenham, J., et al. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263.CrossRefPubMed Milne, E., Swettenham, J., et al. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263.CrossRefPubMed
go back to reference Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. New York: Oxford University Press. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. New York: Oxford University Press.
go back to reference Mottron, L., Dawson, M., et al. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.CrossRefPubMed Mottron, L., Dawson, M., et al. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.CrossRefPubMed
go back to reference Mottron, L., Dawson, M., et al. (2009). Enhanced perception in savant syndrome: Patterns, structure and creativity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1385–1391.CrossRefPubMed Mottron, L., Dawson, M., et al. (2009). Enhanced perception in savant syndrome: Patterns, structure and creativity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1522), 1385–1391.CrossRefPubMed
go back to reference Mottron, L., Peretz, I., et al. (2000). Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry, 41(8), 1057–1065.CrossRefPubMed Mottron, L., Peretz, I., et al. (2000). Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry, 41(8), 1057–1065.CrossRefPubMed
go back to reference Muhle, R., Trentacoste, S. V., et al. (2004). The genetics of autism. Pediatrics, 113(5), e472–e486.CrossRefPubMed Muhle, R., Trentacoste, S. V., et al. (2004). The genetics of autism. Pediatrics, 113(5), e472–e486.CrossRefPubMed
go back to reference Muller, R. A. (2007). The study of autism as a distributed disorder. Mental Retardation and Developmental Disabilities Research Reviews, 13(1), 85–95.CrossRefPubMed Muller, R. A. (2007). The study of autism as a distributed disorder. Mental Retardation and Developmental Disabilities Research Reviews, 13(1), 85–95.CrossRefPubMed
go back to reference Nishida, S., Ledgeway, T., et al. (1997). Dual multiple-scale processing for motion in the human visual system. Vision Research, 37(19), 2685–2698.CrossRefPubMed Nishida, S., Ledgeway, T., et al. (1997). Dual multiple-scale processing for motion in the human visual system. Vision Research, 37(19), 2685–2698.CrossRefPubMed
go back to reference Nishida, S., Sasaki, Y., et al. (2003). Neuroimaging of direction-selective mechanisms for second-order motion. Journal of Neurophysiology, 90(5), 3242–3254.CrossRefPubMed Nishida, S., Sasaki, Y., et al. (2003). Neuroimaging of direction-selective mechanisms for second-order motion. Journal of Neurophysiology, 90(5), 3242–3254.CrossRefPubMed
go back to reference O’Brien, J., Spencer, J., et al. (2002). Form and motion coherence processing in dyspraxia: Evidence of a global spatial processing deficit. Neuroreport, 13(11), 1399–1402.CrossRefPubMed O’Brien, J., Spencer, J., et al. (2002). Form and motion coherence processing in dyspraxia: Evidence of a global spatial processing deficit. Neuroreport, 13(11), 1399–1402.CrossRefPubMed
go back to reference O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665–675.CrossRefPubMed O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665–675.CrossRefPubMed
go back to reference Pei, F., Baldassi, S., et al. (2009). Neural correlates of texture and contour integration in children with autism spectrum disorders. Vision Research, 49(16), 2140–2150.CrossRefPubMed Pei, F., Baldassi, S., et al. (2009). Neural correlates of texture and contour integration in children with autism spectrum disorders. Vision Research, 49(16), 2140–2150.CrossRefPubMed
go back to reference Pellicano, E., & Gibson, L. Y. (2008). Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia, 46(10), 2593–2596.CrossRefPubMed Pellicano, E., & Gibson, L. Y. (2008). Investigating the functional integrity of the dorsal visual pathway in autism and dyslexia. Neuropsychologia, 46(10), 2593–2596.CrossRefPubMed
go back to reference Pellicano, E., Gibson, L., et al. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 1044–1053.CrossRefPubMed Pellicano, E., Gibson, L., et al. (2005). Abnormal global processing along the dorsal visual pathway in autism: A possible mechanism for weak visuospatial coherence? Neuropsychologia, 43(7), 1044–1053.CrossRefPubMed
go back to reference Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29(7), 349–358.CrossRefPubMed Persico, A. M., & Bourgeron, T. (2006). Searching for ways out of the autism maze: Genetic, epigenetic and environmental clues. Trends in Neurosciences, 29(7), 349–358.CrossRefPubMed
go back to reference Reddy, K. S. (2005). Cytogenetic abnormalities and fragile-X syndrome in Autism Spectrum Disorder. BMC Medical Genetics, 6, 3.CrossRefPubMed Reddy, K. S. (2005). Cytogenetic abnormalities and fragile-X syndrome in Autism Spectrum Disorder. BMC Medical Genetics, 6, 3.CrossRefPubMed
go back to reference Rogers, S. J., Wehner, D. E., et al. (2001). The behavioral phenotype in fragile X: Symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. Journal of Developmental and Behavioral Pediatrics, 22(6), 409–417.PubMed Rogers, S. J., Wehner, D. E., et al. (2001). The behavioral phenotype in fragile X: Symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. Journal of Developmental and Behavioral Pediatrics, 22(6), 409–417.PubMed
go back to reference Simmers, A. J., Ledgeway, T., et al. (2003). Deficits to global motion processing in human amblyopia. Vision Research, 43(6), 729–738.CrossRefPubMed Simmers, A. J., Ledgeway, T., et al. (2003). Deficits to global motion processing in human amblyopia. Vision Research, 43(6), 729–738.CrossRefPubMed
go back to reference Simmons, D. R., Robertson, A. E., et al. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739.CrossRefPubMed Simmons, D. R., Robertson, A. E., et al. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739.CrossRefPubMed
go back to reference Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision Research, 40(1), 111–127.CrossRefPubMed Skottun, B. C. (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision Research, 40(1), 111–127.CrossRefPubMed
go back to reference Smith, A. T., Greenlee, M. W., et al. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18(10), 3816–3830.PubMed Smith, A. T., Greenlee, M. W., et al. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18(10), 3816–3830.PubMed
go back to reference Spencer, J. V., & O’Brien, J. M. (2006). Visual form-processing deficits in autism. Perception, 35(8), 1047–1055.CrossRefPubMed Spencer, J. V., & O’Brien, J. M. (2006). Visual form-processing deficits in autism. Perception, 35(8), 1047–1055.CrossRefPubMed
go back to reference Spencer, J., O’Brien, J., et al. (2000). Motion processing in autism: Evidence for a dorsal stream deficiency. Neuroreport, 11(12), 2765–2767.CrossRefPubMed Spencer, J., O’Brien, J., et al. (2000). Motion processing in autism: Evidence for a dorsal stream deficiency. Neuroreport, 11(12), 2765–2767.CrossRefPubMed
go back to reference Sperling, G., Chubb, C., et al. (1994). Full-wave and half-wave processes in second-order motion and texture. Ciba Foundation Symposium, 184, 287–303. discussion 303-8, 330-8.PubMed Sperling, G., Chubb, C., et al. (1994). Full-wave and half-wave processes in second-order motion and texture. Ciba Foundation Symposium, 184, 287–303. discussion 303-8, 330-8.PubMed
go back to reference Steyaert, J. G., & De la Marche, W. (2008). What’s new in autism? European Journal of Pediatrics, 167(10), 1091–1101.CrossRefPubMed Steyaert, J. G., & De la Marche, W. (2008). What’s new in autism? European Journal of Pediatrics, 167(10), 1091–1101.CrossRefPubMed
go back to reference Sutter, A., Sperling, G., et al. (1995). Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Research, 35(7), 915–924.CrossRefPubMed Sutter, A., Sperling, G., et al. (1995). Measuring the spatial frequency selectivity of second-order texture mechanisms. Vision Research, 35(7), 915–924.CrossRefPubMed
go back to reference Theobald, T. M., Hay, D. A., et al. (1987). Individual variation and specific cognitive deficits in the fra(X) syndrome. American Journal of Medical Genetics, 28(1), 1–11.CrossRefPubMed Theobald, T. M., Hay, D. A., et al. (1987). Individual variation and specific cognitive deficits in the fra(X) syndrome. American Journal of Medical Genetics, 28(1), 1–11.CrossRefPubMed
go back to reference Tommerdahl, M., Tannan, V., et al. (2008). Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity? Behavioral and Brain Functions, 4, 19.CrossRefPubMed Tommerdahl, M., Tannan, V., et al. (2008). Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity? Behavioral and Brain Functions, 4, 19.CrossRefPubMed
go back to reference Tsermentseli, S., O’Brien, J. M., et al. (2008). Comparison of form and motion coherence processing in autistic spectrum disorders and dyslexia. Journal of Autism and Developmental Disorders, 38(7), 1201–1210.CrossRefPubMed Tsermentseli, S., O’Brien, J. M., et al. (2008). Comparison of form and motion coherence processing in autistic spectrum disorders and dyslexia. Journal of Autism and Developmental Disorders, 38(7), 1201–1210.CrossRefPubMed
go back to reference Ungerleider, L. G., & Mishkin, M. (1982). Analysis of visual behavior. Cambridge, MA: MIT. Ungerleider, L. G., & Mishkin, M. (1982). Analysis of visual behavior. Cambridge, MA: MIT.
go back to reference Vandenbroucke, M. W., Scholte, H. S., et al. (2008). A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain, 131(Pt 4), 1013–1024.CrossRefPubMed Vandenbroucke, M. W., Scholte, H. S., et al. (2008). A neural substrate for atypical low-level visual processing in autism spectrum disorder. Brain, 131(Pt 4), 1013–1024.CrossRefPubMed
go back to reference Vandenbroucke, M. W., Scholte, H. S., et al. (2009). A new approach to the study of detail perception in Autism Spectrum Disorder (ASD): Investigating visual feedforward, horizontal and feedback processing. Vision Research, 49(9), 1006–1016.CrossRefPubMed Vandenbroucke, M. W., Scholte, H. S., et al. (2009). A new approach to the study of detail perception in Autism Spectrum Disorder (ASD): Investigating visual feedforward, horizontal and feedback processing. Vision Research, 49(9), 1006–1016.CrossRefPubMed
go back to reference Vattikuti, S., & Chow, C. C. (2009). A computational model for cerebral cortical dysfunction in autism spectrum disorders. Biological Psychiatry. Vattikuti, S., & Chow, C. C. (2009). A computational model for cerebral cortical dysfunction in autism spectrum disorders. Biological Psychiatry.
go back to reference Wassink, T. H., Piven, J., et al. (2001). Chromosomal abnormalities in a clinic sample of individuals with autistic disorder. Psychiatric Genetics, 11(2), 57–63.CrossRefPubMed Wassink, T. H., Piven, J., et al. (2001). Chromosomal abnormalities in a clinic sample of individuals with autistic disorder. Psychiatric Genetics, 11(2), 57–63.CrossRefPubMed
go back to reference Wilmer, J. B., Richardson, A. J., et al. (2004). Two visual motion processing deficits in developmental dyslexia associated with different reading skills deficits. Journal of Cognitive Neuroscience, 16(4), 528–540.CrossRefPubMed Wilmer, J. B., Richardson, A. J., et al. (2004). Two visual motion processing deficits in developmental dyslexia associated with different reading skills deficits. Journal of Cognitive Neuroscience, 16(4), 528–540.CrossRefPubMed
go back to reference Wilson, H. R., Ferrera, V. P., et al. (1992). A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience, 9(1), 79–97.CrossRefPubMed Wilson, H. R., Ferrera, V. P., et al. (1992). A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience, 9(1), 79–97.CrossRefPubMed
Metagegevens
Titel
Using Perceptual Signatures to Define and Dissociate Condition-Specific Neural Etiology: Autism and Fragile X Syndrome as Model Conditions
Auteurs
Armando Bertone
Julie Hanck
Cary Kogan
Avi Chaudhuri
Kim Cornish
Publicatiedatum
01-12-2010
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 12/2010
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-010-1109-5