Skip to main content
Top
Gepubliceerd in:

11-06-2021 | Original Paper

Timing and Intertemporal Choice Behavior in the Valproic Acid Rat Model of Autism Spectrum Disorder

Auteurs: William E. DeCoteau, Adam E. Fox

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 6/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Recently it has been proposed that impairments related to autism spectrum disorder (ASD) may reflect a more fundamental disruption in time perception. Here, we examined whether in utero exposure to valproic acid (VPA) can generate specific behavioral deficits related to ASD and time perception. Pups from control and VPA groups were tested using fixed-interval (FI) temporal bisection, peak interval, and intertemporal choice tasks. In addition, the rats were assessed on motor function, perseverative and exploratory behavior, anxiety, and memory. The VPA group displayed a leftward shift in timing functions. VPA rats displayed no deficits on the motor and memory tasks, but were significantly different from controls on measures of perseveration and anxiety.
Literatuur
go back to reference Acosta, J., Campolongo, M. A., Höcht, C., Depino, A. M., Golombek, D. A., & Agostino, P. V. (2018). Deficits in temporal processing in mice prenatally exposed to valproic acid. European Journal of Neuroscience, 47(6), 619–630.PubMedCrossRef Acosta, J., Campolongo, M. A., Höcht, C., Depino, A. M., Golombek, D. A., & Agostino, P. V. (2018). Deficits in temporal processing in mice prenatally exposed to valproic acid. European Journal of Neuroscience, 47(6), 619–630.PubMedCrossRef
go back to reference Allman, M. J., & Falter, C. M. (2015). Abnormal timing and time perception in autism spectrum disorder? A review of the evidence. In A. Vatakis & M. J. Allman (Eds.), Time distortions in mind (pp. 37–56). BRILL. Allman, M. J., & Falter, C. M. (2015). Abnormal timing and time perception in autism spectrum disorder? A review of the evidence. In A. Vatakis & M. J. Allman (Eds.), Time distortions in mind (pp. 37–56). BRILL.
go back to reference Allman, M. J., & Mareschal, D. (2016). Possible evolutionary and developmental mechanisms of mental time travel (and implications for autism). Current Opinion in Behavioral Sciences, 8, 220–225.PubMedPubMedCentralCrossRef Allman, M. J., & Mareschal, D. (2016). Possible evolutionary and developmental mechanisms of mental time travel (and implications for autism). Current Opinion in Behavioral Sciences, 8, 220–225.PubMedPubMedCentralCrossRef
go back to reference Allman, M. J., Yin, B., & Meck, W. H. (2014b). Time in the psychopathological mind. In V. Arstila & D. Lloyd (Eds.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 637–654). American Psychological Association. Allman, M. J., Yin, B., & Meck, W. H. (2014b). Time in the psychopathological mind. In V. Arstila & D. Lloyd (Eds.), Subjective time: The philosophy, psychology, and neuroscience of temporality (pp. 637–654). American Psychological Association.
go back to reference American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association.CrossRef American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association.CrossRef
go back to reference Anshu, K., Nair, A. K., Kumaresan, U. D., Kutty, B. M., Srinath, S., & Laxmi, T. R. (2017). Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Research, 10(12), 1929–1944.PubMedCrossRef Anshu, K., Nair, A. K., Kumaresan, U. D., Kutty, B. M., Srinath, S., & Laxmi, T. R. (2017). Altered attentional processing in male and female rats in a prenatal valproic acid exposure model of autism spectrum disorder. Autism Research, 10(12), 1929–1944.PubMedCrossRef
go back to reference Balci, F., Freestone, D., & Gallistel, C. R. (2009). Risk assessment in man and mouse. Proceedings of the National Academy of Sciences, 106(7), 2459–2463.CrossRef Balci, F., Freestone, D., & Gallistel, C. R. (2009). Risk assessment in man and mouse. Proceedings of the National Academy of Sciences, 106(7), 2459–2463.CrossRef
go back to reference Balci, F., Papachristos, E. B., Gallistel, C. R., Brunner, D., Gibson, J., & Shumyatsky, G. P. (2008). Interval timing in genetically modified mice: A simple paradigm. Genes, Brain and Behavior, 7(3), 373–384.CrossRef Balci, F., Papachristos, E. B., Gallistel, C. R., Brunner, D., Gibson, J., & Shumyatsky, G. P. (2008). Interval timing in genetically modified mice: A simple paradigm. Genes, Brain and Behavior, 7(3), 373–384.CrossRef
go back to reference Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 37–46.PubMedCrossRef Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21(1), 37–46.PubMedCrossRef
go back to reference Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? functional and neural mechanisms of interval timing. Nature Reviews. Neuroscience, 6(10), 755–765.PubMedCrossRef Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? functional and neural mechanisms of interval timing. Nature Reviews. Neuroscience, 6(10), 755–765.PubMedCrossRef
go back to reference Cassidy, S., Hannant, P., Tavassoli, T., Allison, C., Smith, P., & Baron-Cohen, S. (2016). Dyspraxia and autistic traits in adults with and without autism spectrum conditions. Molecular Autism, 7(1), 48.PubMedPubMedCentralCrossRef Cassidy, S., Hannant, P., Tavassoli, T., Allison, C., Smith, P., & Baron-Cohen, S. (2016). Dyspraxia and autistic traits in adults with and without autism spectrum conditions. Molecular Autism, 7(1), 48.PubMedPubMedCentralCrossRef
go back to reference Chadman, K. K., Fernandes, S., DiLiberto, E., & Feingold, R. (2019). Do animal models hold value in autism spectrum disorder (ASD) drug discovery? Expert Opinion on Drug Discovery, 14, 727.PubMedCrossRef Chadman, K. K., Fernandes, S., DiLiberto, E., & Feingold, R. (2019). Do animal models hold value in autism spectrum disorder (ASD) drug discovery? Expert Opinion on Drug Discovery, 14, 727.PubMedCrossRef
go back to reference Christensen, D. L., Maenner, M. J., Bilder, D., Constantino, J. N., Daniels, J., Durkin, M. S., et al. (2019). Prevalence and characteristics of autism spectrum disorder among children aged 4 years—Early autism and developmental disabilities monitoring network, seven sites, United States, 2010, 2012, and 2014. Morbidity and Mortality Weekly Report. Surveillance Summaries, 68(2), 1–19. https://doi.org/10.15585/mmwr.ss6802a1CrossRefPubMedPubMedCentral Christensen, D. L., Maenner, M. J., Bilder, D., Constantino, J. N., Daniels, J., Durkin, M. S., et al. (2019). Prevalence and characteristics of autism spectrum disorder among children aged 4 years—Early autism and developmental disabilities monitoring network, seven sites, United States, 2010, 2012, and 2014. Morbidity and Mortality Weekly Report. Surveillance Summaries, 68(2), 1–19. https://​doi.​org/​10.​15585/​mmwr.​ss6802a1CrossRefPubMedPubMedCentral
go back to reference Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology: Animal Behavior Processes, 20, 135–155.PubMed Church, R. M., Meck, W. H., & Gibbon, J. (1994). Application of scalar timing theory to individual trials. Journal of Experimental Psychology: Animal Behavior Processes, 20, 135–155.PubMed
go back to reference Delehanty, A. D., Stronach, S., Guthrie, W., Slate, E., & Wetherby, A. M. (2018). Verbal and nonverbal outcomes of toddlers with and without autism spectrum disorder, language delay, and global developmental delay. Autism & Developmental Language Impairments, 3, 2396941518764764.CrossRef Delehanty, A. D., Stronach, S., Guthrie, W., Slate, E., & Wetherby, A. M. (2018). Verbal and nonverbal outcomes of toddlers with and without autism spectrum disorder, language delay, and global developmental delay. Autism & Developmental Language Impairments, 3, 2396941518764764.CrossRef
go back to reference Demetriou, E. A., Lampit, A., Quintana, D. S., Naismith, S. L., Song, Y., Pye, J. E., et al. (2018). Autism spectrum disorders: A meta-analysis of executive function. Molecular Psychiatry, 23(5), 1198.PubMedCrossRef Demetriou, E. A., Lampit, A., Quintana, D. S., Naismith, S. L., Song, Y., Pye, J. E., et al. (2018). Autism spectrum disorders: A meta-analysis of executive function. Molecular Psychiatry, 23(5), 1198.PubMedCrossRef
go back to reference Dziuk, M. A., Larson, J. G., Apostu, A., Mahone, E. M., Denckla, M. B., & Mostofsky, S. H. (2007). Dyspraxia in autism: Association with motor, social, and communicative deficits. Developmental Medicine & Child Neurology, 49(10), 734–739.CrossRef Dziuk, M. A., Larson, J. G., Apostu, A., Mahone, E. M., Denckla, M. B., & Mostofsky, S. H. (2007). Dyspraxia in autism: Association with motor, social, and communicative deficits. Developmental Medicine & Child Neurology, 49(10), 734–739.CrossRef
go back to reference Edalatmanesh, M. A., Nikfarjam, H., Vafaee, F., & Moghadas, M. (2013). Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Research, 1526, 15–25.PubMedCrossRef Edalatmanesh, M. A., Nikfarjam, H., Vafaee, F., & Moghadas, M. (2013). Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Research, 1526, 15–25.PubMedCrossRef
go back to reference Ellenbroek, B. A., August, C., & Youn, J. (2016). Does prenatal valproate interact with a genetic reduction in the serotonin transporter? A rat study on anxiety and cognition. Frontiers in Neuroscience, 10, 424.PubMedPubMedCentralCrossRef Ellenbroek, B. A., August, C., & Youn, J. (2016). Does prenatal valproate interact with a genetic reduction in the serotonin transporter? A rat study on anxiety and cognition. Frontiers in Neuroscience, 10, 424.PubMedPubMedCentralCrossRef
go back to reference Ergaz, Z., Weinstein-Fudim, L., & Ornoy, A. (2016). Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reproductive Toxicology, 64, 116–140.PubMedCrossRef Ergaz, Z., Weinstein-Fudim, L., & Ornoy, A. (2016). Genetic and non-genetic animal models for autism spectrum disorders (ASD). Reproductive Toxicology, 64, 116–140.PubMedCrossRef
go back to reference Fontes-Dutra, M., Nunes, G. D., Santos-Terra, J., Souza-Nunes, W., Bauer-Negrini, G., Hirsch, M. M., et al. (2019). Abnormal empathy-like pro-social behaviour in the valproic acid model of autism spectrum disorder. Behavioural Brain Research, 364, 11–18.PubMedCrossRef Fontes-Dutra, M., Nunes, G. D., Santos-Terra, J., Souza-Nunes, W., Bauer-Negrini, G., Hirsch, M. M., et al. (2019). Abnormal empathy-like pro-social behaviour in the valproic acid model of autism spectrum disorder. Behavioural Brain Research, 364, 11–18.PubMedCrossRef
go back to reference Fox, A. E., & Kyonka, E. G. E. (2016). Effects of signaling on temporal control of behavior in response-initiated fixed intervals. Journal of the Experimental Analysis of Behavior, 106, 210–224.PubMedCrossRef Fox, A. E., & Kyonka, E. G. E. (2016). Effects of signaling on temporal control of behavior in response-initiated fixed intervals. Journal of the Experimental Analysis of Behavior, 106, 210–224.PubMedCrossRef
go back to reference Fox, A. E., Prue, K. E., & Kyonka, E. G. (2016). What is timed in a fixed-interval temporal bisection procedure? Learning & Behavior, 44(4), 366–377.CrossRef Fox, A. E., Prue, K. E., & Kyonka, E. G. (2016). What is timed in a fixed-interval temporal bisection procedure? Learning & Behavior, 44(4), 366–377.CrossRef
go back to reference Fox, A. E., Caramia, S. R., Haskell, M. M., Ramey, A. L., & Singha, D. (2017). Stimulus control in two rodent models of attention-deficit/hyperactivity disorder. Behavioural Processes, 135, 16–24.PubMedCrossRef Fox, A. E., Caramia, S. R., Haskell, M. M., Ramey, A. L., & Singha, D. (2017). Stimulus control in two rodent models of attention-deficit/hyperactivity disorder. Behavioural Processes, 135, 16–24.PubMedCrossRef
go back to reference Fox, A. E., Visser, E. J., & Nicholson, A. M. (2019). Interventions aimed at changing impulsive choice in rats: Effects of immediate and relatively long delay to reward training. Behavioural Processes, 158, 126–136.PubMedCrossRef Fox, A. E., Visser, E. J., & Nicholson, A. M. (2019). Interventions aimed at changing impulsive choice in rats: Effects of immediate and relatively long delay to reward training. Behavioural Processes, 158, 126–136.PubMedCrossRef
go back to reference Friedman, S. D., Shaw, D. W., Artru, A. A., Dawson, G., Petropoulos, H., & Dager, S. R. (2006). Gray and white matter brain chemistry in young children with autism. Archives of General Psychiatry, 63(7), 786–794.PubMedCrossRef Friedman, S. D., Shaw, D. W., Artru, A. A., Dawson, G., Petropoulos, H., & Dager, S. R. (2006). Gray and white matter brain chemistry in young children with autism. Archives of General Psychiatry, 63(7), 786–794.PubMedCrossRef
go back to reference Gao, J., Wu, H., Cao, Y., Liang, S., Sun, C., Wang, P., et al. (2016). Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. The Journal of Nutritional Biochemistry, 35, 87–95.PubMedCrossRef Gao, J., Wu, H., Cao, Y., Liang, S., Sun, C., Wang, P., et al. (2016). Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid. The Journal of Nutritional Biochemistry, 35, 87–95.PubMedCrossRef
go back to reference Guilhardi, P., & Church, R. M. (2005). Dynamics of temporal discrimination. Learning and Behavior, 33, 399–416.PubMedCrossRef Guilhardi, P., & Church, R. M. (2005). Dynamics of temporal discrimination. Learning and Behavior, 33, 399–416.PubMedCrossRef
go back to reference Habib, A., Harris, L., Pollick, F., & Melville, C. (2019). A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE, 14(4), e0216198.PubMedPubMedCentralCrossRef Habib, A., Harris, L., Pollick, F., & Melville, C. (2019). A meta-analysis of working memory in individuals with autism spectrum disorders. PLoS ONE, 14(4), e0216198.PubMedPubMedCentralCrossRef
go back to reference Haznedar, M. M., Buchsbaum, M. S., Hazlett, E. A., LiCalzi, E. M., Cartwright, C., & Hollander, E. (2006). Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. The American Journal of Psychiatry, 163(7), 1252–1263.PubMedCrossRef Haznedar, M. M., Buchsbaum, M. S., Hazlett, E. A., LiCalzi, E. M., Cartwright, C., & Hollander, E. (2006). Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. The American Journal of Psychiatry, 163(7), 1252–1263.PubMedCrossRef
go back to reference Hertz-Picciotto, I., Schmidt, R. J., & Krakowiak, P. (2018). Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Research, 11(4), 554–586.PubMedCrossRef Hertz-Picciotto, I., Schmidt, R. J., & Krakowiak, P. (2018). Understanding environmental contributions to autism: Causal concepts and the state of science. Autism Research, 11(4), 554–586.PubMedCrossRef
go back to reference Isaksson, S., Salomäki, S., Tuominen, J., Arstila, V., Falter-Wagner, C. M., & Noreika, V. (2018). Is there a generalized timing impairment in autism spectrum disorders across time scales and paradigms? Journal of Psychiatric Research, 99, 111–121.PubMedCrossRef Isaksson, S., Salomäki, S., Tuominen, J., Arstila, V., Falter-Wagner, C. M., & Noreika, V. (2018). Is there a generalized timing impairment in autism spectrum disorders across time scales and paradigms? Journal of Psychiatric Research, 99, 111–121.PubMedCrossRef
go back to reference Juybari, K. B., Sepehri, G., Meymandi, M. S., Shahrbabaki, S. S. V., Moslemizadeh, A., Saeedi, N., et al. (2020). Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicology and Teratology, 81, 106905.PubMedCrossRef Juybari, K. B., Sepehri, G., Meymandi, M. S., Shahrbabaki, S. S. V., Moslemizadeh, A., Saeedi, N., et al. (2020). Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicology and Teratology, 81, 106905.PubMedCrossRef
go back to reference Kaiser, D. H. (2008). The proportion of fixed interval trials to probe trials affects acquisition of the peak procedure fixed interval timing task. Behavioural Processes, 77(1), 100–108.PubMedCrossRef Kaiser, D. H. (2008). The proportion of fixed interval trials to probe trials affects acquisition of the peak procedure fixed interval timing task. Behavioural Processes, 77(1), 100–108.PubMedCrossRef
go back to reference Kim, K. C., Choi, C. S., Kim, J., Han, S., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2016). MeCP2 modulates sex differences in the postsynaptic development of the valproate animal model of autism. Molecular Neurobiology, 53(1), 40–56.PubMedCrossRef Kim, K. C., Choi, C. S., Kim, J., Han, S., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2016). MeCP2 modulates sex differences in the postsynaptic development of the valproate animal model of autism. Molecular Neurobiology, 53(1), 40–56.PubMedCrossRef
go back to reference Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., et al. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843.PubMedCrossRef Kim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., et al. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843.PubMedCrossRef
go back to reference Knopf, A. (2018). Autism rates increase slightly: CDC. The Brown University Child and Adolescent Behavior Letter, 34(6), 4–5.CrossRef Knopf, A. (2018). Autism rates increase slightly: CDC. The Brown University Child and Adolescent Behavior Letter, 34(6), 4–5.CrossRef
go back to reference Lambrechts, A., Falter-Wagner, C. M., & van Wassenhove, V. (2018). Diminished neural resources allocation to time processing in autism spectrum disorders. NeuroImage: Clinical, 17, 124–136.CrossRef Lambrechts, A., Falter-Wagner, C. M., & van Wassenhove, V. (2018). Diminished neural resources allocation to time processing in autism spectrum disorders. NeuroImage: Clinical, 17, 124–136.CrossRef
go back to reference Lawson, W. (2001). Understanding and working with the spectrum of autism: An insider’s view. Jessica Kingsley Publishers. Lawson, W. (2001). Understanding and working with the spectrum of autism: An insider’s view. Jessica Kingsley Publishers.
go back to reference Leigh, J. P., & Du, J. (2015). Brief report: Forecasting the economic burden of autism in 2015 and 2025 in the united states. Journal of Autism and Developmental Disorders, 45(12), 4135–4139.PubMedCrossRef Leigh, J. P., & Du, J. (2015). Brief report: Forecasting the economic burden of autism in 2015 and 2025 in the united states. Journal of Autism and Developmental Disorders, 45(12), 4135–4139.PubMedCrossRef
go back to reference Lewis, G. J., Shakeshaft, N. G., & Plomin, R. (2018). Face identity recognition and the social difficulties component of the autism-like phenotype: Evidence for phenotypic and genetic links. Journal of Autism and Developmental Disorders, 48(8), 2758–2765.PubMedPubMedCentralCrossRef Lewis, G. J., Shakeshaft, N. G., & Plomin, R. (2018). Face identity recognition and the social difficulties component of the autism-like phenotype: Evidence for phenotypic and genetic links. Journal of Autism and Developmental Disorders, 48(8), 2758–2765.PubMedPubMedCentralCrossRef
go back to reference Mabunga, D. F. N., Gonzales, E. L. T., Kim, J., Kim, K. C., & Shin, C. Y. (2015). Exploring the validity of valproic acid animal model of autism. Experimental Neurobiology, 24(4), 285–300.PubMedPubMedCentralCrossRef Mabunga, D. F. N., Gonzales, E. L. T., Kim, J., Kim, K. C., & Shin, C. Y. (2015). Exploring the validity of valproic acid animal model of autism. Experimental Neurobiology, 24(4), 285–300.PubMedPubMedCentralCrossRef
go back to reference MacDonald, M., Lord, C., & Ulrich, D. A. (2014). Motor skills and calibrated autism severity in young children with autism spectrum disorder. Adapted Physical Activity Quarterly, 31(2), 95–105.PubMedCrossRef MacDonald, M., Lord, C., & Ulrich, D. A. (2014). Motor skills and calibrated autism severity in young children with autism spectrum disorder. Adapted Physical Activity Quarterly, 31(2), 95–105.PubMedCrossRef
go back to reference Macdonald, C. J., Cheng, R., & Meck, W. H. (2012). Acquisition of “start” and “stop” response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Frontiers in Integrative Neuroscience, 6, 10.PubMedPubMedCentralCrossRef Macdonald, C. J., Cheng, R., & Meck, W. H. (2012). Acquisition of “start” and “stop” response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Frontiers in Integrative Neuroscience, 6, 10.PubMedPubMedCentralCrossRef
go back to reference Main, S. L., & Kulesza, R. J. (2017). Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience, 340, 34–47.PubMedCrossRef Main, S. L., & Kulesza, R. J. (2017). Repeated prenatal exposure to valproic acid results in cerebellar hypoplasia and ataxia. Neuroscience, 340, 34–47.PubMedCrossRef
go back to reference Malapani, C., Dubois, B., Rancurel, G., & Gibbon, J. (1998). Cerebellar dysfunctions of temporal processing in the seconds range in humans. NeuroReport, 9(17), 3907–3912.PubMedCrossRef Malapani, C., Dubois, B., Rancurel, G., & Gibbon, J. (1998). Cerebellar dysfunctions of temporal processing in the seconds range in humans. NeuroReport, 9(17), 3907–3912.PubMedCrossRef
go back to reference Meck, W. H. (2006a). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109(1), 93–107.PubMedCrossRef Meck, W. H. (2006a). Neuroanatomical localization of an internal clock: A functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Research, 1109(1), 93–107.PubMedCrossRef
go back to reference Meck, W. H. (2006b). Temporal memory in mature and aged rats is sensitive to choline acetyltransferase inhibition. Brain Research, 1108(1), 168–175.PubMedCrossRef Meck, W. H. (2006b). Temporal memory in mature and aged rats is sensitive to choline acetyltransferase inhibition. Brain Research, 1108(1), 168–175.PubMedCrossRef
go back to reference Moore, S. J., Turnpenny, P., Quinn, A., Glover, S., Lloyd, D. J., Montgomery, T., & Dean, J. (2000). A clinical study of 57 children with fetal anticonvulsant syndromes. Journal of Medical Genetics, 37(7), 489–497.PubMedPubMedCentralCrossRef Moore, S. J., Turnpenny, P., Quinn, A., Glover, S., Lloyd, D. J., Montgomery, T., & Dean, J. (2000). A clinical study of 57 children with fetal anticonvulsant syndromes. Journal of Medical Genetics, 37(7), 489–497.PubMedPubMedCentralCrossRef
go back to reference Motanis, H., Seay, M. J., & Buonomano, D. V. (2018). Short-term synaptic plasticity as a mechanism for sensory timing. Trends in Neurosciences, 41(10), 701–711.PubMedPubMedCentralCrossRef Motanis, H., Seay, M. J., & Buonomano, D. V. (2018). Short-term synaptic plasticity as a mechanism for sensory timing. Trends in Neurosciences, 41(10), 701–711.PubMedPubMedCentralCrossRef
go back to reference Olexova, L., Stefanik, P., & Krskova, L. (2016). Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats—An animal model of autism. Neuroscience Letters, 629, 9–14.PubMedCrossRef Olexova, L., Stefanik, P., & Krskova, L. (2016). Increased anxiety-like behaviour and altered GABAergic system in the amygdala and cerebellum of VPA rats—An animal model of autism. Neuroscience Letters, 629, 9–14.PubMedCrossRef
go back to reference Petter, E. A., Lusk, N. A., Hesslow, G., & Meck, W. H. (2016). Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neuroscience and Biobehavioral Reviews, 71, 739–755.PubMedCrossRef Petter, E. A., Lusk, N. A., Hesslow, G., & Meck, W. H. (2016). Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neuroscience and Biobehavioral Reviews, 71, 739–755.PubMedCrossRef
go back to reference R Core Team. (2019). R: A language and environment for statistical computing. R Core Team. R Core Team. (2019). R: A language and environment for statistical computing. R Core Team.
go back to reference Rogge, N., & Janssen, J. (2019). The economic costs of autism spectrum disorder: A literature review. Journal of Autism and Developmental Disorders, 49, 2873.PubMedCrossRef Rogge, N., & Janssen, J. (2019). The economic costs of autism spectrum disorder: A literature review. Journal of Autism and Developmental Disorders, 49, 2873.PubMedCrossRef
go back to reference Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2(5), 255–267.PubMedPubMedCentralCrossRef Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2(5), 255–267.PubMedPubMedCentralCrossRef
go back to reference Schneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K., & Przewłocki, R. (2008). Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology, 33(6), 728–740.PubMedCrossRef Schneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K., & Przewłocki, R. (2008). Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology, 33(6), 728–740.PubMedCrossRef
go back to reference Schuck, R. K., Flores, R. E., & Fung, L. K. (2019). Brief report: Sex/gender differences in symptomology and camouflaging in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 49(6), 2597–2604.PubMedPubMedCentralCrossRef Schuck, R. K., Flores, R. E., & Fung, L. K. (2019). Brief report: Sex/gender differences in symptomology and camouflaging in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 49(6), 2597–2604.PubMedPubMedCentralCrossRef
go back to reference Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., & Baird, G. (2008). Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. Journal of the American Academy of Child & Adolescent Psychiatry, 47(8), 921–929.CrossRef Simonoff, E., Pickles, A., Charman, T., Chandler, S., Loucas, T., & Baird, G. (2008). Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. Journal of the American Academy of Child & Adolescent Psychiatry, 47(8), 921–929.CrossRef
go back to reference Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons control judgment of time. Science (new York, n.y.), 354(6317), 1273–1277.CrossRef Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons control judgment of time. Science (new York, n.y.), 354(6317), 1273–1277.CrossRef
go back to reference Underwood, J. F., Kendall, K. M., Berrett, J., Anney, R., Van Den Bree, M., & Hall, J. (2018). ASD diagnosis in adults: Phenotype and genotype findings from a clinically-derived cohort. bioRxiv, 215, 647. Underwood, J. F., Kendall, K. M., Berrett, J., Anney, R., Van Den Bree, M., & Hall, J. (2018). ASD diagnosis in adults: Phenotype and genotype findings from a clinically-derived cohort. bioRxiv, 215, 647.
go back to reference Vogel, D., Falter-Wagner, C. M., Schoofs, T., Krämer, K., Kupke, C., & Vogeley, K. (2019). Interrupted time experience in autism spectrum disorder: Empirical evidence from content analysis. Journal of Autism and Developmental Disorders, 49(1), 22–33.PubMedCrossRef Vogel, D., Falter-Wagner, C. M., Schoofs, T., Krämer, K., Kupke, C., & Vogeley, K. (2019). Interrupted time experience in autism spectrum disorder: Empirical evidence from content analysis. Journal of Autism and Developmental Disorders, 49(1), 22–33.PubMedCrossRef
go back to reference Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B., & Hersh, J. H. (2001). Fetal valproate syndrome and autism: Additional evidence of an association. Developmental Medicine and Child Neurology, 43(3), 202–206.PubMedCrossRef Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B., & Hersh, J. H. (2001). Fetal valproate syndrome and autism: Additional evidence of an association. Developmental Medicine and Child Neurology, 43(3), 202–206.PubMedCrossRef
go back to reference Wilson, C. E., Murphy, C. M., McAlonan, G., Robertson, D. M., Spain, D., Hayward, H., et al. (2016). Does sex influence the diagnostic evaluation of autism spectrum disorder in adults? Autism, 20(7), 808–819.PubMedPubMedCentralCrossRef Wilson, C. E., Murphy, C. M., McAlonan, G., Robertson, D. M., Spain, D., Hayward, H., et al. (2016). Does sex influence the diagnostic evaluation of autism spectrum disorder in adults? Autism, 20(7), 808–819.PubMedPubMedCentralCrossRef
go back to reference Wiśniowiecka-Kowalnik, B., & Nowakowska, B. A. (2019). Genetics and epigenetics of autism spectrum disorder—Current evidence in the field. Journal of Applied Genetics, 60(1), 37–47.PubMedPubMedCentralCrossRef Wiśniowiecka-Kowalnik, B., & Nowakowska, B. A. (2019). Genetics and epigenetics of autism spectrum disorder—Current evidence in the field. Journal of Applied Genetics, 60(1), 37–47.PubMedPubMedCentralCrossRef
go back to reference Young, M. E. (2017). Discounting: A practical guide to multilevel analysis of indifference data. Journal of the Experimental Analysis of Behavior, 108(1), 97–112.PubMedCrossRef Young, M. E. (2017). Discounting: A practical guide to multilevel analysis of indifference data. Journal of the Experimental Analysis of Behavior, 108(1), 97–112.PubMedCrossRef
Metagegevens
Titel
Timing and Intertemporal Choice Behavior in the Valproic Acid Rat Model of Autism Spectrum Disorder
Auteurs
William E. DeCoteau
Adam E. Fox
Publicatiedatum
11-06-2021
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 6/2022
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-021-05129-y

Andere artikelen Uitgave 6/2022

Journal of Autism and Developmental Disorders 6/2022 Naar de uitgave