Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2015

01-05-2015 | Original Article

Response to period shifts in tapping and circle drawing: a window into event and emergent components of continuous movement

Auteur: Breanna E. Studenka

Gepubliceerd in: Psychological Research | Uitgave 3/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Synchronization of movement to a metronome is a well-studied task for both discretely and smoothly produced rhythmic movement. In particular, behavioral responses to unexpected changes in a regular metronome can reveal both the strength and the completeness of error correction mechanisms and temporal control. Clock-like control is exhibited by discretely produced movement and movement with discrete perceptual information, whereas smoothly produced movement does not rely on internal clock mechanisms. Documented differences in error correction between discretely and smoothly produced movements have been attributed to this different underlying control. In this study, error correction mechanisms were examined by inducing changes in the pace of rhythmic movement. An overshoot response following the pace change for both tapping and circle drawing is documented, and suggests the presence of phase and period correction in both tasks. The presence of phase correction in circle drawing also suggests that clock and non-clock timing may co-exist within the same movement. Furthermore, a sub-group of participants emerged who appropriately changed pace, but were not able to correct the phasing of their movement while performing the circle drawing task, supporting that phase and period maintenance in timing are independently controlled processes.
Literatuur
go back to reference Baer, L. H., Thibodeau, J. L., Gralnick, T. M., Li, K. Z., & Penhune, V. B. (2013). The role of musical training in emergent and event-based timing. Frontiers in Human Neuroscience, 7, 191.CrossRefPubMedCentralPubMed Baer, L. H., Thibodeau, J. L., Gralnick, T. M., Li, K. Z., & Penhune, V. B. (2013). The role of musical training in emergent and event-based timing. Frontiers in Human Neuroscience, 7, 191.CrossRefPubMedCentralPubMed
go back to reference Collins, D. F., Refshauge, K. M., Todd, G., & Gandevia, S. C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology, 94, 1699–1706.CrossRefPubMed Collins, D. F., Refshauge, K. M., Todd, G., & Gandevia, S. C. (2005). Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee. Journal of Neurophysiology, 94, 1699–1706.CrossRefPubMed
go back to reference Delignières, D., & Torre, K. (2011). Event-based and emergent timing: dichotomy or continuum? A reply to Repp and Steinman (2010). Journal of Motor Behavior, 43, 311–318.CrossRefPubMed Delignières, D., & Torre, K. (2011). Event-based and emergent timing: dichotomy or continuum? A reply to Repp and Steinman (2010). Journal of Motor Behavior, 43, 311–318.CrossRefPubMed
go back to reference Elliott, M. T., Welchman, A. E., & Wing, A. M. (2009). Being discrete helps keeps to the beat. Experimental Brain Research, 192, 731–737.CrossRefPubMed Elliott, M. T., Welchman, A. E., & Wing, A. M. (2009). Being discrete helps keeps to the beat. Experimental Brain Research, 192, 731–737.CrossRefPubMed
go back to reference Hary, D., & Moore, G. P. (1985). Temporal tracking and synchronization strategies. Human Neurobiology, 4, 73–77.PubMed Hary, D., & Moore, G. P. (1985). Temporal tracking and synchronization strategies. Human Neurobiology, 4, 73–77.PubMed
go back to reference Huys, R., Studenka, B. E., Rheaume, N. L., Zelaznik, H. N., & Jirsa, V. K. (2008). Distinct timing mechanisms produce discrete and continuous movements. PLoS Computational Biology, 4, e1000061.CrossRefPubMedCentralPubMed Huys, R., Studenka, B. E., Rheaume, N. L., Zelaznik, H. N., & Jirsa, V. K. (2008). Distinct timing mechanisms produce discrete and continuous movements. PLoS Computational Biology, 4, e1000061.CrossRefPubMedCentralPubMed
go back to reference Huys, R., Studenka, B. E., Zelaznik, H. N., & Jirsa, V. K. (2010). Distinct timing mechanisms are implicated in distinct circle drawing tasks. Neuroscience Letters, 472, 24–28.CrossRefPubMed Huys, R., Studenka, B. E., Zelaznik, H. N., & Jirsa, V. K. (2010). Distinct timing mechanisms are implicated in distinct circle drawing tasks. Neuroscience Letters, 472, 24–28.CrossRefPubMed
go back to reference Loehr, J. D., Large, E. W., & Palmer, C. (2011). Temporal coordination and adaptation to rate change in music performance. Journal of Experimental Psychology: Human Perception and Performance, 37, 1292–1309.PubMed Loehr, J. D., Large, E. W., & Palmer, C. (2011). Temporal coordination and adaptation to rate change in music performance. Journal of Experimental Psychology: Human Perception and Performance, 37, 1292–1309.PubMed
go back to reference Lorås, H., Sigmundsson, H., Talcott, J. B., Öhberg, F. O., & Stensdotter, A. K. (2012). Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals. Experimental Brain Research, 220, 335–347.CrossRefPubMed Lorås, H., Sigmundsson, H., Talcott, J. B., Öhberg, F. O., & Stensdotter, A. K. (2012). Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals. Experimental Brain Research, 220, 335–347.CrossRefPubMed
go back to reference Mates, J. (1994a). A model of synchronisation of motor acts to a stimulus sequence. I. Timing and error corrections. Biological Cybernetics, 70, 463–473.CrossRefPubMed Mates, J. (1994a). A model of synchronisation of motor acts to a stimulus sequence. I. Timing and error corrections. Biological Cybernetics, 70, 463–473.CrossRefPubMed
go back to reference Mates, J. (1994b). A model of synchronisation of motor acts to a stimulus sequence. II. Stability analysis, error estimation and simulations. Biological Cybernetics, 70, 475–484.CrossRefPubMed Mates, J. (1994b). A model of synchronisation of motor acts to a stimulus sequence. II. Stability analysis, error estimation and simulations. Biological Cybernetics, 70, 475–484.CrossRefPubMed
go back to reference Proske, U., Schaible, H. G., & Schmidt, R. F. (1988). Joint receptors and kinaesthesia. Experimental Brain Research, 72, 219–224.CrossRefPubMed Proske, U., Schaible, H. G., & Schmidt, R. F. (1988). Joint receptors and kinaesthesia. Experimental Brain Research, 72, 219–224.CrossRefPubMed
go back to reference Repp, B. H. (2000). Compensation for subliminal timing perturbations in perceptual- motor synchronization. Psychological Research-Psychologische Forschung, 63, 106–128.CrossRef Repp, B. H. (2000). Compensation for subliminal timing perturbations in perceptual- motor synchronization. Psychological Research-Psychologische Forschung, 63, 106–128.CrossRef
go back to reference Repp, B. H. (2001a). Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 27, 600–621.PubMed Repp, B. H. (2001a). Phase correction, phase resetting, and phase shifts after subliminal timing perturbations in sensorimotor synchronization. Journal of Experimental Psychology: Human Perception and Performance, 27, 600–621.PubMed
go back to reference Repp, B. H. (2001b). Processes underlying adaptation to tempo changes in sensorimotor synchronization. Human Movement Science, 20, 277–312.CrossRefPubMed Repp, B. H. (2001b). Processes underlying adaptation to tempo changes in sensorimotor synchronization. Human Movement Science, 20, 277–312.CrossRefPubMed
go back to reference Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.CrossRefPubMed Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin and Review, 12, 969–992.CrossRefPubMed
go back to reference Repp, B. H. (2008). Perfect phase correction in synchronization with slow auditory sequences. Journal of Motor Behavior, 40, 363–367.CrossRefPubMed Repp, B. H. (2008). Perfect phase correction in synchronization with slow auditory sequences. Journal of Motor Behavior, 40, 363–367.CrossRefPubMed
go back to reference Repp, B. H., & Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Quarterly Journal of Experimental Psychology, 57, 499–521.CrossRefPubMed Repp, B. H., & Keller, P. E. (2004). Adaptation to tempo changes in sensorimotor synchronization: effects of intention, attention, and awareness. Quarterly Journal of Experimental Psychology, 57, 499–521.CrossRefPubMed
go back to reference Repp, B. H., & Steinman, S. R. (2010). Simultaneous event-based and emergent timing: synchronization, continuation, and phase correction. Journal of Motor Behavior, 42, 111–126.CrossRefPubMed Repp, B. H., & Steinman, S. R. (2010). Simultaneous event-based and emergent timing: synchronization, continuation, and phase correction. Journal of Motor Behavior, 42, 111–126.CrossRefPubMed
go back to reference Robertson, S., Zelaznik, H., Lantero, D., Gadacz, K., Spencer, R., Doffin, J., et al. (1999). Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. Journal of Experimental Psychology: Human Perception and Performance, 25, 1316–1330.PubMed Robertson, S., Zelaznik, H., Lantero, D., Gadacz, K., Spencer, R., Doffin, J., et al. (1999). Correlations for timing consistency among tapping and drawing tasks: evidence against a single timing process for motor control. Journal of Experimental Psychology: Human Perception and Performance, 25, 1316–1330.PubMed
go back to reference Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science, 300, 1437–1439.CrossRefPubMed Spencer, R. M. C., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science, 300, 1437–1439.CrossRefPubMed
go back to reference Studenka, B. E., & Zelaznik, H. N. (2011a). Synchronization in repetitive smooth movement requires perceptible events. Acta Psychologica, 136, 432–441.CrossRefPubMed Studenka, B. E., & Zelaznik, H. N. (2011a). Synchronization in repetitive smooth movement requires perceptible events. Acta Psychologica, 136, 432–441.CrossRefPubMed
go back to reference Studenka, B. E., & Zelaznik, H. N. (2011b). Emergently timed circle drawing does not exhibit auditory-motor synchronization. Journal of Motor Behavior, 43, 185–191.CrossRefPubMed Studenka, B. E., & Zelaznik, H. N. (2011b). Emergently timed circle drawing does not exhibit auditory-motor synchronization. Journal of Motor Behavior, 43, 185–191.CrossRefPubMed
go back to reference Studenka, B. E., Zelaznik, H. N., & Balasubramaniam, R. (2012). The distinction between tapping and circle drawing with and without tactile feedback: an examination of the sources of timing variance. The Quarterly Journal of Experimental Psychology, 65, 1086–1100.CrossRefPubMed Studenka, B. E., Zelaznik, H. N., & Balasubramaniam, R. (2012). The distinction between tapping and circle drawing with and without tactile feedback: an examination of the sources of timing variance. The Quarterly Journal of Experimental Psychology, 65, 1086–1100.CrossRefPubMed
go back to reference Teulings, H. L., Contreras-Vidal, J. L., Stelmach, G. E., & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146, 159–170.CrossRefPubMed Teulings, H. L., Contreras-Vidal, J. L., Stelmach, G. E., & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146, 159–170.CrossRefPubMed
go back to reference Thaut, M. H., Miller, R. A., & Schauer, L. M. (1998). Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs. period correction. Biological Cybernetics, 79, 241–250.CrossRefPubMed Thaut, M. H., Miller, R. A., & Schauer, L. M. (1998). Multiple synchronization strategies in rhythmic sensorimotor tasks: phase vs. period correction. Biological Cybernetics, 79, 241–250.CrossRefPubMed
go back to reference Torre, K., & Balasubramaniam, R. (2009). Two different processes for sensorimotor synchronization in continuous and discontinuous rhythmic movements. Experimental Brain Research, 199, 157–166.CrossRefPubMed Torre, K., & Balasubramaniam, R. (2009). Two different processes for sensorimotor synchronization in continuous and discontinuous rhythmic movements. Experimental Brain Research, 199, 157–166.CrossRefPubMed
go back to reference Torre, K., Balasubramaniam, R., & Delignières, D. (2010). Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling. Motor Control, 14, 323–343.PubMed Torre, K., Balasubramaniam, R., & Delignières, D. (2010). Oscillating in synchrony with a metronome: serial dependence, limit cycle dynamics, and modeling. Motor Control, 14, 323–343.PubMed
go back to reference Torre, K., & Delignières, D. (2008). Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling. Acta Psychologica, 129, 284–296.CrossRefPubMed Torre, K., & Delignières, D. (2008). Distinct ways of timing movements in bimanual coordination tasks: contribution of serial correlation analysis and implications for modeling. Acta Psychologica, 129, 284–296.CrossRefPubMed
go back to reference Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception and Psychophysics, 14, 5–12.CrossRef Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception and Psychophysics, 14, 5–12.CrossRef
go back to reference Zelaznik, H. N., & Rosenbaum, D. A. (2010). Timing processes are correlated when tasks share a salient event. Journal of Experimental Psychology: Human Perception and Performance, 36, 1565–1575.PubMed Zelaznik, H. N., & Rosenbaum, D. A. (2010). Timing processes are correlated when tasks share a salient event. Journal of Experimental Psychology: Human Perception and Performance, 36, 1565–1575.PubMed
go back to reference Zelaznik, H., Spencer, R. M. C., & Ivry, R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception and Performance, 28, 575–588.PubMed Zelaznik, H., Spencer, R. M. C., & Ivry, R. B. (2002). Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception and Performance, 28, 575–588.PubMed
go back to reference Zelaznik, H. N., Spencer, R. M. C., Ivry, R. B., Baria, A., Bloom, M., Dolansky, L., et al. (2005). Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing. Journal of Motor Behavior, 37, 395–404.CrossRefPubMedCentralPubMed Zelaznik, H. N., Spencer, R. M. C., Ivry, R. B., Baria, A., Bloom, M., Dolansky, L., et al. (2005). Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing. Journal of Motor Behavior, 37, 395–404.CrossRefPubMedCentralPubMed
Metagegevens
Titel
Response to period shifts in tapping and circle drawing: a window into event and emergent components of continuous movement
Auteur
Breanna E. Studenka
Publicatiedatum
01-05-2015
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2015
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-014-0578-0

Andere artikelen Uitgave 3/2015

Psychological Research 3/2015 Naar de uitgave