Skip to main content
Top
Gepubliceerd in: Netherlands Heart Journal 10/2008

01-10-2008 | review article

Regenerative cell therapy and pharmacotherapeutic intervention in heart failure

Part 2: Pharmacological targets, agents and intervention perspectives

Auteurs: C. Qian, R. G. Schoemaker, W. H. van Gilst, B. Yu, A. J. M. Roks

Gepubliceerd in: Netherlands Heart Journal | Uitgave 10/2008

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Regenerative medicine represents a promising perspective on therapeutic angiogenesis in patients with cardiovascular disease, including heart failure. However, previous or ongoing clinical trials show ambiguous outcomes with respect to the benefit of regenerative therapy by means of bone marrow stem cell infusion in myocardial infarction patients. Therefore, it is necessary to set up a rational therapeutic strategy in the treatment of congestive heart failure. Chemokines, cytokines and growth factors, as well as pharmaceutical agents, may have an impact on endothelial progenitor cell (EPC) physiology and thus can provide targets for pharmacological intervention. Indeed, EPCs and stem cell niches both in bone marrow and myocardial tissue can be treated as an integral target for recruitment of EPCs from the bone marrow to the cardiac ischaemic niche. In this article, we individually place the signalling factors in their specified context, and explain their roles in the various phases of neovascularisation (see Part 1). (Neth Heart J 2008;16:337-43.)
Literatuur
1.
go back to reference Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 2006;10:267-80. Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 2006;10:267-80.
2.
go back to reference Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004;10:858-64. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004;10:858-64.
3.
go back to reference Rajagopalan S, Olin J, Deitcher S et al. Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 2007; 115:1234-43. Rajagopalan S, Olin J, Deitcher S et al. Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 2007; 115:1234-43.
4.
go back to reference Jiang M, Wang B, Wang C, et al. Angiogenesis by transplantation of HIF-1alpha modified EPCs into ischemic limbs. J Cell Bio chem 2008;103:321-34. Jiang M, Wang B, Wang C, et al. Angiogenesis by transplantation of HIF-1alpha modified EPCs into ischemic limbs. J Cell Bio chem 2008;103:321-34.
5.
go back to reference Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005;97:1142-51. Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005;97:1142-51.
6.
go back to reference Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006;12:657-64. Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006;12:657-64.
7.
go back to reference Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006;12:557-67. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006;12:557-67.
8.
go back to reference van Weel V, Seghers L, de Vries MR, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol 2007;27:1426-32. van Weel V, Seghers L, de Vries MR, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol 2007;27:1426-32.
9.
go back to reference Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 2007;446:444-8. Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 2007;446:444-8.
10.
go back to reference Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release ofkit-ligand. Cell 2002;109:625-37. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release ofkit-ligand. Cell 2002;109:625-37.
11.
go back to reference Kuhlmann MT, Kirchhof P, Klocke R, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 2006;203:87-97. Kuhlmann MT, Kirchhof P, Klocke R, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 2006;203:87-97.
12.
go back to reference Lehrke S, Mazhari R, Durand DJ, et al. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ Res 2006;99:553-60. Lehrke S, Mazhari R, Durand DJ, et al. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ Res 2006;99:553-60.
13.
go back to reference Jeon O, Kang SW, Lim HW, et al. Synergistic effect of sustained delivery of basic fibroblast growth factor and bone marrow mono-nuclear cell transplantation on angiogenesis in mouse ischemic limbs. Biomaterials 2006;27:1617-25. Jeon O, Kang SW, Lim HW, et al. Synergistic effect of sustained delivery of basic fibroblast growth factor and bone marrow mono-nuclear cell transplantation on angiogenesis in mouse ischemic limbs. Biomaterials 2006;27:1617-25.
14.
go back to reference Atluri P, Liao GP, Panlilio CM, et al. Neovasculogenic therapy to augment perfusion and preserve viability in ischemic cardiomyo-pathy. Ann Thorac Surg 2006;81:1728-36. Atluri P, Liao GP, Panlilio CM, et al. Neovasculogenic therapy to augment perfusion and preserve viability in ischemic cardiomyo-pathy. Ann Thorac Surg 2006;81:1728-36.
15.
go back to reference Valgimigli M, Rigolin GM, Cittanti C, et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 2005;26:1838-45. Valgimigli M, Rigolin GM, Cittanti C, et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 2005;26:1838-45.
16.
go back to reference Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006;295: 1003-10. Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006;295: 1003-10.
17.
go back to reference Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/ fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16:159-78. Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/ fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16:159-78.
18.
go back to reference Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J Biol Chem 2004;279:4007-16. Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J Biol Chem 2004;279:4007-16.
19.
go back to reference Ito T, Sawada R, Fujiwara Y, et al. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem BiophysRes Commun 2007;359:108-14. Ito T, Sawada R, Fujiwara Y, et al. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem BiophysRes Commun 2007;359:108-14.
20.
go back to reference Fontaine V, Filipe C, Werner N, et al. Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on re-endothelialization and endothelial progenitor cell mobilization. Am J Pathol 2006;169:1855- Fontaine V, Filipe C, Werner N, et al. Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on re-endothelialization and endothelial progenitor cell mobilization. Am J Pathol 2006;169:1855-
21.
go back to reference Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971;133:275-88. Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971;133:275-88.
22.
go back to reference Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003;161:1163-77. Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003;161:1163-77.
23.
go back to reference Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820-7. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820-7.
24.
go back to reference Grunewald M, Avraham I, DorY, et al. VEGF-induced adult neo-vascularization: recruitment, retention, and role of accessory cells. Cell 2006;124:175-89. Grunewald M, Avraham I, DorY, et al. VEGF-induced adult neo-vascularization: recruitment, retention, and role of accessory cells. Cell 2006;124:175-89.
25.
go back to reference Li B, Sharpe EE, Maupin AB, et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 2006;20:1495-7. Li B, Sharpe EE, Maupin AB, et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 2006;20:1495-7.
26.
go back to reference Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 2007;177:489-500. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 2007;177:489-500.
27.
go back to reference Papapetropoulos A, Garcia-Cardena G, Madri JA, et al. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997;100:3131-9. Papapetropoulos A, Garcia-Cardena G, Madri JA, et al. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997;100:3131-9.
28.
go back to reference Thum T, Fraccarollo D, Galuppo P, et al. Bone marrow molecular alterations after myocardial infarction: Impact on endothelial progenitor cells. Cardiovasc Res 2006;70:50-60. Thum T, Fraccarollo D, Galuppo P, et al. Bone marrow molecular alterations after myocardial infarction: Impact on endothelial progenitor cells. Cardiovasc Res 2006;70:50-60.
29.
go back to reference Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370-6. Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370-6.
30.
go back to reference Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens 2005;23:1699-706. Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens 2005;23:1699-706.
31.
go back to reference Masuda H, Kalka C, Takahashi T, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 2007;101:598-606. Masuda H, Kalka C, Takahashi T, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 2007;101:598-606.
32.
go back to reference Imanishi T, Hano T, Nishio I. Estrogen reduces angiotensin II-induced acceleration of senescence in endothelial progenitor cells. Hypertens Res 2005;28:263-71. Imanishi T, Hano T, Nishio I. Estrogen reduces angiotensin II-induced acceleration of senescence in endothelial progenitor cells. Hypertens Res 2005;28:263-71.
33.
go back to reference Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation 2006;114:2261-70. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation 2006;114:2261-70.
34.
go back to reference Fox KA, Steg PG, Eagle KA, et al. Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006. JAMA 2007;297:1892-900. Fox KA, Steg PG, Eagle KA, et al. Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006. JAMA 2007;297:1892-900.
35.
go back to reference O'Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-co-enzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997;95:1126-31. O'Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-co-enzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997;95:1126-31.
36.
go back to reference Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001;108:391-7. Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001;108:391-7.
37.
go back to reference Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003;92:1049-55. Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003;92:1049-55.
38.
go back to reference Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 2004;110: 3136-42. Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 2004;110: 3136-42.
39.
go back to reference Landmesser U, Engberding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 2004;110:1933-9. Landmesser U, Engberding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 2004;110:1933-9.
40.
go back to reference Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005;352: 20-8. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005;352: 20-8.
41.
go back to reference Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N EnglJ Med 2007;357:2248-61. Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N EnglJ Med 2007;357:2248-61.
42.
go back to reference Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1 340-6. Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1 340-6.
43.
go back to reference Rankin EB, Biju MP, Liu Q, et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 2007;1 17:1068-77. Rankin EB, Biju MP, Liu Q, et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 2007;1 17:1068-77.
44.
go back to reference Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 2005;100:397-403. Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 2005;100:397-403.
45.
go back to reference Westenbrink BD, Lipsic E, van der Meer P, et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 2007;16:2018-27. Westenbrink BD, Lipsic E, van der Meer P, et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 2007;16:2018-27.
46.
go back to reference Bahlmann FH, De Groot K, Spandau JM, et al. Erythropoietin regulates endothelial progenitor cells. Blood 2004;103:921-6. Bahlmann FH, De Groot K, Spandau JM, et al. Erythropoietin regulates endothelial progenitor cells. Blood 2004;103:921-6.
47.
go back to reference Nakano M, Satoh K, Fukumoto Y, et al. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 2007;100:662-9. Nakano M, Satoh K, Fukumoto Y, et al. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 2007;100:662-9.
48.
go back to reference Sun Y, Calvert JW, Zhang JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 2005;36:1672-8. Sun Y, Calvert JW, Zhang JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 2005;36:1672-8.
49.
go back to reference Lee MS, Lee JS, Lee JY. Prevention of erythropoietin-associated hypertension. Hypertension 2007;50:439-45. Lee MS, Lee JS, Lee JY. Prevention of erythropoietin-associated hypertension. Hypertension 2007;50:439-45.
50.
go back to reference Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7): an evolving story in cardiovascular regulation. Hypertension 2006;47:515-21. Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7): an evolving story in cardiovascular regulation. Hypertension 2006;47:515-21.
51.
go back to reference Matsushita K, Wu Y, Okamoto Y, et al. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 2006;48:1095-102. Matsushita K, Wu Y, Okamoto Y, et al. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 2006;48:1095-102.
52.
go back to reference Imanishi T, Hano T, Nishio I. Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens Res 2004;27: 101-8. Imanishi T, Hano T, Nishio I. Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens Res 2004;27: 101-8.
53.
go back to reference Matsushita K, Wu Y, Okamoto Y, et al. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 2006;48:1095-102. Matsushita K, Wu Y, Okamoto Y, et al. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 2006;48:1095-102.
54.
go back to reference Imanishi T, Moriwaki C, Hano T, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens 2005;23:1831-7. Imanishi T, Moriwaki C, Hano T, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens 2005;23:1831-7.
55.
go back to reference Ferrario CM, Jessup J, Gallagher PE, et al. Effects of renin-angio-tensin system blockade on renal angiotensin- (1-7) forming enzymes and receptors. Kidney Int 2005;68:2189-96. Ferrario CM, Jessup J, Gallagher PE, et al. Effects of renin-angio-tensin system blockade on renal angiotensin- (1-7) forming enzymes and receptors. Kidney Int 2005;68:2189-96.
56.
go back to reference Loot AE, Roks AJ, Henning RH, et al. Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 2002;105:1548-50. Loot AE, Roks AJ, Henning RH, et al. Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 2002;105:1548-50.
57.
go back to reference Langeveld B, van Gilst WH, Tio RA, et al. Angiotensin-(1-7) attenuates neointimal formation after stent implantation in the rat. Hypertension 2005;45:1 38-41. Langeveld B, van Gilst WH, Tio RA, et al. Angiotensin-(1-7) attenuates neointimal formation after stent implantation in the rat. Hypertension 2005;45:1 38-41.
58.
go back to reference Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 2005;289:H1560-6. Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 2005;289:H1560-6.
59.
go back to reference Ellefson DD, diZerega GS, Espinoza T, et al. Synergistic effects of co-administration of angiotensin 1-7 and Neupogen on hemato-poietic recovery in mice. Cancer Chemother Pharmacol 2004;53: 15-24. Ellefson DD, diZerega GS, Espinoza T, et al. Synergistic effects of co-administration of angiotensin 1-7 and Neupogen on hemato-poietic recovery in mice. Cancer Chemother Pharmacol 2004;53: 15-24.
60.
go back to reference Rodgers KE, Oliver J, diZerega GS. Phase I/II dose escalation study of angiotensin 1-7 [A(1-7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol 2006;57:559-68. Rodgers KE, Oliver J, diZerega GS. Phase I/II dose escalation study of angiotensin 1-7 [A(1-7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol 2006;57:559-68.
61.
go back to reference Wang CH, Verma S, Hsieh IC, et al. Enalapril increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. J Mol Cell Cardiol 2006;41:34-43. Wang CH, Verma S, Hsieh IC, et al. Enalapril increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. J Mol Cell Cardiol 2006;41:34-43.
62.
go back to reference Olivares EL, Costa-E-Sousa RH, Werneck-de-Castro JP et al. Cellular cardiomyoplasty in large myocardial infarction: Can the beneficial effect be enhanced by ACE-inhibitor therapy? Eur J Heart Fail 2007;9:558-67. Olivares EL, Costa-E-Sousa RH, Werneck-de-Castro JP et al. Cellular cardiomyoplasty in large myocardial infarction: Can the beneficial effect be enhanced by ACE-inhibitor therapy? Eur J Heart Fail 2007;9:558-67.
63.
go back to reference Bahlmann FH, De Groot K, Mueller O, et al. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 2005;45:526-9. Bahlmann FH, De Groot K, Mueller O, et al. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 2005;45:526-9.
64.
go back to reference Yu Y, Fukuda N, Yao EH, et al. Effects of an ARB on Endothelial Progenitor Cell Function and Cardiovascular Oxidation in Hypertension. Am J Hypertens 2008;21:72-7. Yu Y, Fukuda N, Yao EH, et al. Effects of an ARB on Endothelial Progenitor Cell Function and Cardiovascular Oxidation in Hypertension. Am J Hypertens 2008;21:72-7.
65.
go back to reference Seeger FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007;28:766-72. Seeger FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007;28:766-72.
66.
go back to reference Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2007;111:1302-5. Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2007;111:1302-5.
67.
go back to reference Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 2007;25:317-8. Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 2007;25:317-8.
68.
go back to reference Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210-21. Netherlands Heart Journal, Volume 16, Number 10, October 2008 Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210-21. Netherlands Heart Journal, Volume 16, Number 10, October 2008
Metagegevens
Titel
Regenerative cell therapy and pharmacotherapeutic intervention in heart failure
Part 2: Pharmacological targets, agents and intervention perspectives
Auteurs
C. Qian
R. G. Schoemaker
W. H. van Gilst
B. Yu
A. J. M. Roks
Publicatiedatum
01-10-2008
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Netherlands Heart Journal / Uitgave 10/2008
Print ISSN: 1568-5888
Elektronisch ISSN: 1876-6250
DOI
https://doi.org/10.1007/BF03086175

Andere artikelen Uitgave 10/2008

Netherlands Heart Journal 10/2008 Naar de uitgave