Skip to main content
Top

2017 | OriginalPaper | Hoofdstuk

6. Het instellen van de beademingsmachine

Auteur : Hans ter Haar

Gepubliceerd in: Mechanische beademing op de intensive care

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Het instellen van de beademingsmachine moet in overeenstemming zijn met de doelen van mechanische beademing, adequate gaswisseling, veiligheid, comfort en een zo kort mogelijke beademingsduur. Of het nu een routine postoperatieve beademing betreft of een complexe beademing, deze doelen moeten altijd verwerkt zijn in de instelling. De operator zal op de hoogte moeten zijn van de eigenschappen van de beademingsmachine en de gebruikte beademingsvormen, maar ook van de specifieke pathofysiologie en state of the art behandelmethoden. Deze behandelmethoden betreffen niet alleen het instellen van de beademingsmachine, maar ook andere behandelstrategieën die het bereiken van de doelen van mechanische beademing mogelijk maken. Het instellen van de beademingsmachine begint altijd met de keuze voor een beademingsvorm, waarna parameters voor ventilatie en oxygenatie volgen en ten slotte de finetuning.
Literatuur
1.
go back to reference Chatburn RL, Mireles-Cabodevila E. Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respir Care. 2011;56(1):85–98.CrossRefPubMed Chatburn RL, Mireles-Cabodevila E. Closed-loop control of mechanical ventilation: description and classification of targeting schemes. Respir Care. 2011;56(1):85–98.CrossRefPubMed
2.
go back to reference Network The Acute Respiratory Distress Syndrome. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef Network The Acute Respiratory Distress Syndrome. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.CrossRef
3.
go back to reference Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit. 2008;14(2):22–6. Schultz MJ. Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit. 2008;14(2):22–6.
4.
5.
go back to reference Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.CrossRefPubMed Aboab J, Jonson B, Kouatchet A, et al. Effect of inspired oxygen fraction on alveolar derecruitment in acute respiratory distress syndrome. Intensive Care Med. 2006;32:1979–86.CrossRefPubMed
6.
go back to reference Hedenstierna G. The hidden pulmonary dysfunction in acute lung injury. Intensive Care Med. 2006;32:1933–4.CrossRefPubMed Hedenstierna G. The hidden pulmonary dysfunction in acute lung injury. Intensive Care Med. 2006;32:1933–4.CrossRefPubMed
7.
go back to reference Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRefPubMed Thille AW, Rodriguez P, Cabello B, et al. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32:1515–22.CrossRefPubMed
8.
go back to reference Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRefPubMed Thille AW, Cabello B, Galia F, et al. Reduction of patient-ventilator asynchrony by reducing tidal volume during pressure-support ventilation. Intensive Care Med. 2008;34:1477–86.CrossRefPubMed
9.
go back to reference Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Statement of the Sixth International Consensus Conference on Intensive Care Medicine. Eur Respir J. 2007;29:1033–56. Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Statement of the Sixth International Consensus Conference on Intensive Care Medicine. Eur Respir J. 2007;29:1033–56.
10.
go back to reference Roussos CS, Fukuchi Y, Macklem PT, Engel LA. Influence of diaphragmatic contraction on ventilation distribution in horizontal man. J Appl Physiol. 1976;40(3):417–24.PubMed Roussos CS, Fukuchi Y, Macklem PT, Engel LA. Influence of diaphragmatic contraction on ventilation distribution in horizontal man. J Appl Physiol. 1976;40(3):417–24.PubMed
11.
go back to reference Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.CrossRefPubMed Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358(13):1327–35.CrossRefPubMed
12.
go back to reference Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation–perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.CrossRefPubMed Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation–perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.CrossRefPubMed
13.
go back to reference Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: A physiology-based narrative and systematic review. Chest. 2015;148(2):340–55.CrossRefPubMed Rittayamai N, Katsios CM, Beloncle F, et al. Pressure-controlled vs volume-controlled ventilation in acute respiratory failure: A physiology-based narrative and systematic review. Chest. 2015;148(2):340–55.CrossRefPubMed
14.
go back to reference Spieth PM, Carvalho AR, Pelosi P, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med. 2009;179:684–93.CrossRefPubMed Spieth PM, Carvalho AR, Pelosi P, et al. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury. Am J Respir Crit Care Med. 2009;179:684–93.CrossRefPubMed
15.
go back to reference Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. JAMA. 2013;368(9):795–805. Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. JAMA. 2013;368(9):795–805.
16.
go back to reference MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med. 1997;25(10):1671–7.CrossRefPubMed MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med. 1997;25(10):1671–7.CrossRefPubMed
17.
go back to reference Kacmarek RM. Proportional assist ventilation en neurally adjusted ventilatory assist. Respir Care. 2011;56(2):140–8.CrossRefPubMed Kacmarek RM. Proportional assist ventilation en neurally adjusted ventilatory assist. Respir Care. 2011;56(2):140–8.CrossRefPubMed
18.
go back to reference Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65. Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS. Rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.
19.
go back to reference Ijland MM, Heunks LM, Hoeven JG van der. Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic’. Crit Care. 2010;14:237. Ijland MM, Heunks LM, Hoeven JG van der. Bench-to-bedside review: hypercapnic acidosis in lung injury – from ‘permissive’ to ‘therapeutic’. Crit Care. 2010;14:237.
20.
go back to reference Maeda Y, Fuyino Y, Uchiyama A, et al. Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief? Crit Care. 2003;7(5):R92–7.CrossRefPubMedPubMedCentral Maeda Y, Fuyino Y, Uchiyama A, et al. Does the tube-compensation function of two modern mechanical ventilators provide effective work of breathing relief? Crit Care. 2003;7(5):R92–7.CrossRefPubMedPubMedCentral
21.
go back to reference Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.CrossRefPubMed Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–64.CrossRefPubMed
22.
go back to reference Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.CrossRefPubMed Mascheroni D, Kolobow T, Fumagalli R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:8–14.CrossRefPubMed
23.
go back to reference Suter PM, Fairley HB, Isenberg MD. Optimum end expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.CrossRefPubMed Suter PM, Fairley HB, Isenberg MD. Optimum end expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med. 1975;292(6):284–9.CrossRefPubMed
24.
go back to reference Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.CrossRefPubMed Sarge T, Loring SH, Yitsak-Sade M, et al. Raising positive end-expiratory pressures in ARDS to achieve a positive transpulmonary pressure does not cause hemodynamic compromise. Intensive Care Med. 2014;40:126–8.CrossRefPubMed
25.
go back to reference Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38(3):802–7.CrossRefPubMed Fougeres E, Teboul JL, Richard C, et al. Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med. 2010;38(3):802–7.CrossRefPubMed
26.
go back to reference Quan SF, Falltrick RT, Schlobom RM. Extubation from ambient or expiratory positive airway pressure in adults. Anesthesiology. 1981;55(1):53–6.CrossRefPubMed Quan SF, Falltrick RT, Schlobom RM. Extubation from ambient or expiratory positive airway pressure in adults. Anesthesiology. 1981;55(1):53–6.CrossRefPubMed
27.
go back to reference Bikker IG, Bommel J van, Miranda DR, et al. End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care. 2008;12:R145. Bikker IG, Bommel J van, Miranda DR, et al. End-expiratory lung volume during mechanical ventilation: a comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit Care. 2008;12:R145.
28.
go back to reference Richard JC, Maggiore SM, Jonson B, et al. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med. 2001;163:1609–13.CrossRefPubMed Richard JC, Maggiore SM, Jonson B, et al. Influence of tidal volume on alveolar recruitment. Respective role of PEEP and a recruitment maneuver. Am J Respir Crit Care Med. 2001;163:1609–13.CrossRefPubMed
29.
go back to reference Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Critical Care. 2004;8(5):350–5.CrossRefPubMedPubMedCentral Gattinoni L, Chiumello D, Carlesso E, Valenza F. Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Critical Care. 2004;8(5):350–5.CrossRefPubMedPubMedCentral
30.
go back to reference Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.CrossRefPubMedPubMedCentral Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359(20):2095–104.CrossRefPubMedPubMedCentral
31.
go back to reference Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med. 2001;163:69–78.CrossRefPubMed Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med. 2001;163:69–78.CrossRefPubMed
32.
go back to reference Suarez-Sipman F, Böhm SH, Tusman G, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35(1):214–21.CrossRef Suarez-Sipman F, Böhm SH, Tusman G, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med. 2007;35(1):214–21.CrossRef
34.
go back to reference Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med. 2006;41:4–18.CrossRefPubMed Bhandari V, Elias JA. Cytokines in tolerance to hyperoxia-induced injury in the developing and adult lung. Free Radic Biol Med. 2006;41:4–18.CrossRefPubMed
35.
go back to reference Altemeier WA, Sinclair SE. Hyperoxia in the intensive care unit: why is more not always better. Curr Opin Crit Care. 2007;13:73–8.CrossRefPubMed Altemeier WA, Sinclair SE. Hyperoxia in the intensive care unit: why is more not always better. Curr Opin Crit Care. 2007;13:73–8.CrossRefPubMed
36.
go back to reference Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.CrossRefPubMed Branson RD, Robinson BRH. Oxygen: when is more the enemy of good? Intensive Care Med. 2011;37:1–3.CrossRefPubMed
37.
go back to reference Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.CrossRefPubMed Kilgannon JH, Jones AE, Shapiro NI, et al. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303(21):2165–71.CrossRefPubMed
38.
go back to reference Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco 2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.CrossRefPubMed Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco 2 with prone position is predictive of improved outcome in acute respiratory distress syndrome. Crit Care Med. 2003;31(12):2727–33.CrossRefPubMed
39.
go back to reference Osman D, Monnet X, Castelain V, et al. Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Med. 2009;35:69–76.CrossRefPubMed Osman D, Monnet X, Castelain V, et al. Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Med. 2009;35:69–76.CrossRefPubMed
40.
41.
go back to reference Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths. A frequently unrecognized form of neuromechanical coupling. Chest. 2013;143(4):927–38.CrossRefPubMed Akoumianaki E, Lyazidi A, Rey N, et al. Mechanical ventilation-induced reverse-triggered breaths. A frequently unrecognized form of neuromechanical coupling. Chest. 2013;143(4):927–38.CrossRefPubMed
42.
go back to reference Chiumello D, Pelosi P, Croci M, et al. The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J. 2001;18:107–14. Chiumello D, Pelosi P, Croci M, et al. The effects of pressurization rate on breathing pattern, work of breathing, gas exchange and patient comfort in pressure support ventilation. Eur Respir J. 2001;18:107–14.
Metagegevens
Titel
Het instellen van de beademingsmachine
Auteur
Hans ter Haar
Copyright
2017
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-1590-1_6