Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2022

21-03-2021 | Review

Foraging behavior in visual search: A review of theoretical and mathematical models in humans and animals

Auteurs: Marcos Bella-Fernández, Manuel Suero Suñé, Beatriz Gil-Gómez de Liaño

Gepubliceerd in: Psychological Research | Uitgave 2/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Visual search (VS) is a fundamental task in daily life widely studied for over half a century. A variant of the classic paradigm—searching one target among distractors—requires the observer to look for several (undetermined) instances of a target (so-called foraging) or several targets that may appear an undefined number of times (recently named as hybrid foraging). In these searches, besides looking for targets, the observer must decide how much time is needed to exploit the area, and when to quit the search to eventually explore new search options. In fact, visual foraging is a very common search task in the real world, probably involving additional cognitive functions than typical VS. It has been widely studied in natural animal environments, for which several mathematical models have been proposed, and just recently applied to humans: Lévy processes, composite and area-restricted search models, marginal value theorem, and Bayesian learning (among others). We conducted a systematic search in the literature to understand those mathematical models and study its applicability in human visual foraging. The review suggests that these models might be the first step, but they seem to be limited to fully comprehend foraging in visual search. There are essential variables involving human visual foraging still to be established and understood. Indeed, a jointly theoretical interpretation based on the different models reviewed could better account for its understanding. In addition, some other relevant variables, such as certain individual differences or time perception might be crucial to understanding visual foraging in humans.
Literatuur
go back to reference Adachi, T., Costa, D. P., Robinson, P. W., Peterson, S. H., Yamamichi, M., Naito, Y., & Takahashi, A. (2017). Searching for prey in a three‐dimensional environment: Hierarchical movements enhance foraging success in northern elephant seals. Functional Ecology, 31(2), 361–369. Adachi, T., Costa, D. P., Robinson, P. W., Peterson, S. H., Yamamichi, M., Naito, Y., & Takahashi, A. (2017). Searching for prey in a three‐dimensional environment: Hierarchical movements enhance foraging success in northern elephant seals. Functional Ecology, 31(2), 361–369.
go back to reference Adler, F. R., & Kotar, M. (1999). Departure time versus departure rate: How to forage optimally when you are stupid. Evolutionary Ecology Research, 1, 411–421. Adler, F. R., & Kotar, M. (1999). Departure time versus departure rate: How to forage optimally when you are stupid. Evolutionary Ecology Research, 1, 411–421.
go back to reference Ahmed, L., & de Fockert, J. W. (2012). Focusing on attention: The effects of working memory capacity and load on selective attention. PLoS ONE, 7(8), e43101.PubMedPubMedCentral Ahmed, L., & de Fockert, J. W. (2012). Focusing on attention: The effects of working memory capacity and load on selective attention. PLoS ONE, 7(8), e43101.PubMedPubMedCentral
go back to reference Alonso, J. C., Alonso, J. A., Bautista, L. M., & Muñoz-Pulido, R. (1995). Patch use in cranes: A field test of optimal foraging predictions. Animal Behavior, 49, 1367–1379. Alonso, J. C., Alonso, J. A., Bautista, L. M., & Muñoz-Pulido, R. (1995). Patch use in cranes: A field test of optimal foraging predictions. Animal Behavior, 49, 1367–1379.
go back to reference Aplin, L. M., Farine, D. R., Mann, R. P., & Sheldon, B. C. (2014). Individual-level personality influences social foraging and collective behavior in wild birds. Proceedings of the Royal Society B, 281, 20141016.PubMedPubMedCentral Aplin, L. M., Farine, D. R., Mann, R. P., & Sheldon, B. C. (2014). Individual-level personality influences social foraging and collective behavior in wild birds. Proceedings of the Royal Society B, 281, 20141016.PubMedPubMedCentral
go back to reference Arkes, H. R., & Ayton, P. (1999). The sunk cost and Concorde effects: Are humans less rational than lower animals? Psychological Bulletin, 125(5), 591–600. Arkes, H. R., & Ayton, P. (1999). The sunk cost and Concorde effects: Are humans less rational than lower animals? Psychological Bulletin, 125(5), 591–600.
go back to reference Arkes, H. R., & Blumer, C. (1985). The psychology of sunk cost. Organizational Behavior and Human Decision Processes, 35(1), 124–140. Arkes, H. R., & Blumer, C. (1985). The psychology of sunk cost. Organizational Behavior and Human Decision Processes, 35(1), 124–140.
go back to reference Aswani, S. (1998). Patterns of marine harvest effort in southwestern New Georgia, Solomon Islands: Resource management or optimal foraging? Ocean & Coastal Management, 40(2–3), 207–235. Aswani, S. (1998). Patterns of marine harvest effort in southwestern New Georgia, Solomon Islands: Resource management or optimal foraging? Ocean & Coastal Management, 40(2–3), 207–235.
go back to reference Auger-Méthé, M., Derocher, A. E., DeMars, C. A., Plank, M. J., Codling, E. A., & Lewis, M. A. (2016). Evaluating random search strategies in three mammals from distinct feed guilds. Journal of Animal Ecology, 85(5), 1411–1421. Auger-Méthé, M., Derocher, A. E., DeMars, C. A., Plank, M. J., Codling, E. A., & Lewis, M. A. (2016). Evaluating random search strategies in three mammals from distinct feed guilds. Journal of Animal Ecology, 85(5), 1411–1421.
go back to reference Auger-Méthé, M., Derocher, A., Plank, M. J., Codling, E., & Lewis, M. A. (2015). Differentiating the Lévy walk from a composite correlated random walk. Methods in Ecology and Evolution, 6, 1179–1189. Auger-Méthé, M., Derocher, A., Plank, M. J., Codling, E., & Lewis, M. A. (2015). Differentiating the Lévy walk from a composite correlated random walk. Methods in Ecology and Evolution, 6, 1179–1189.
go back to reference Bailey, H., Lyubchich, V., Wingfield, J., Fandel, A., Garrod, A., & Rice, A. N. (2019). Empirical evidence that large marine predator foraging behavior is consistent with area-restricted search theory. Ecology, 100(8), e02743.PubMed Bailey, H., Lyubchich, V., Wingfield, J., Fandel, A., Garrod, A., & Rice, A. N. (2019). Empirical evidence that large marine predator foraging behavior is consistent with area-restricted search theory. Ecology, 100(8), e02743.PubMed
go back to reference Baronchelli, A., & Radicchi, F. (2013). Lévy flights in human behavior and cognition. Chaos, Solitons & Fractals, 56, 101–105. Baronchelli, A., & Radicchi, F. (2013). Lévy flights in human behavior and cognition. Chaos, Solitons & Fractals, 56, 101–105.
go back to reference Bartumeus, F. (2007). Lévy processes in animal movement: An evolutionary hypothesis. Fractals, 15(2), 151–162. Bartumeus, F. (2007). Lévy processes in animal movement: An evolutionary hypothesis. Fractals, 15(2), 151–162.
go back to reference Bartumeus, F., Raposo, E., Viswanathan, G. M., & Da Luz, M. (2014). Stochastic optimal foraging: Tuning intensive and extensive dynamics in random searches. PLoS ONE, 9(9), e106373.PubMedPubMedCentral Bartumeus, F., Raposo, E., Viswanathan, G. M., & Da Luz, M. (2014). Stochastic optimal foraging: Tuning intensive and extensive dynamics in random searches. PLoS ONE, 9(9), e106373.PubMedPubMedCentral
go back to reference Baumann, C., Singmann, H., Gershman, S. J., & Von Helversen, B. (2020). A linear threshold model for optimal behavior model. Proceedings of the National Academy of Sciences, 117(23), 12750–12755. Baumann, C., Singmann, H., Gershman, S. J., & Von Helversen, B. (2020). A linear threshold model for optimal behavior model. Proceedings of the National Academy of Sciences, 117(23), 12750–12755.
go back to reference Benedix, J. H. (1993). Area-restricted search by the plains pocket gopher (Geomys bursarius) in tallgrass prairie habitat. Behavioral Ecology, 4(4), 318–324. Benedix, J. H. (1993). Area-restricted search by the plains pocket gopher (Geomys bursarius) in tallgrass prairie habitat. Behavioral Ecology, 4(4), 318–324.
go back to reference Benhamou, S. (2007). How many animals really do the Lévy walk? Ecology, 88, 1962–1969.PubMed Benhamou, S. (2007). How many animals really do the Lévy walk? Ecology, 88, 1962–1969.PubMed
go back to reference Benhamou, S., & Collet, J. (2015). Ultimate failure of the Lévy Foraging Hypothesis: Two-scale searching strategies outperform scale-free ones even when prey are scarce and cryptic. Journal of Theoretical Biology, 387, 221–227.PubMed Benhamou, S., & Collet, J. (2015). Ultimate failure of the Lévy Foraging Hypothesis: Two-scale searching strategies outperform scale-free ones even when prey are scarce and cryptic. Journal of Theoretical Biology, 387, 221–227.PubMed
go back to reference Bennison, A., Quinn, J. L., Debney, A., & Jessop, M. (2019). Tidal drift removes the need for area-restricted search in foraging Atlantic puffins. Biology Letters, 15(7), 20190208.PubMedPubMedCentral Bennison, A., Quinn, J. L., Debney, A., & Jessop, M. (2019). Tidal drift removes the need for area-restricted search in foraging Atlantic puffins. Biology Letters, 15(7), 20190208.PubMedPubMedCentral
go back to reference Bertrand, S., Bertrand, A., Guevara-Carrasco, R., & Gerlotto, F. (2007). Scale-invariant movements of fishermen: The same foraging strategy as natural predators. Ecological Applications, 17(2), 331–337.PubMed Bertrand, S., Bertrand, A., Guevara-Carrasco, R., & Gerlotto, F. (2007). Scale-invariant movements of fishermen: The same foraging strategy as natural predators. Ecological Applications, 17(2), 331–337.PubMed
go back to reference Bettinger, R. L., & Grote, M. N. (2016). Marginal value theorem, patch choice, and human foraging response in varying environments. Journal of Anthropolical Archaeology, 42, 79–87. Bettinger, R. L., & Grote, M. N. (2016). Marginal value theorem, patch choice, and human foraging response in varying environments. Journal of Anthropolical Archaeology, 42, 79–87.
go back to reference Biernaskie, J. M., Walker, S. C., & Gegear, R. J. (2009). Bumblebees learn to forage like Bayesians. The American Naturalist, 174(3), 413–423. Biernaskie, J. M., Walker, S. C., & Gegear, R. J. (2009). Bumblebees learn to forage like Bayesians. The American Naturalist, 174(3), 413–423.
go back to reference Biggs, A. T. (2017). Getting satisfied with “satisfaction of search”: How to measure errors during multiple-target search. Attention, Perception & Psychophysics, 79, 1353–1365. Biggs, A. T. (2017). Getting satisfied with “satisfaction of search”: How to measure errors during multiple-target search. Attention, Perception & Psychophysics, 79, 1353–1365.
go back to reference Biggs, A. T., Clark, K., & Mitroff, S. R. (2017). Who should be searching? Differences in personality can affect visual search accuracy. Personality and Individual Differences, 116, 353–358. Biggs, A. T., Clark, K., & Mitroff, S. R. (2017). Who should be searching? Differences in personality can affect visual search accuracy. Personality and Individual Differences, 116, 353–358.
go back to reference Bixter, M. T., & Luhmann, C. C. (2013). Adaptive intertemporal preferences in foraging-style environments. Frontiers in Neuroscience, 7, 93.PubMedPubMedCentral Bixter, M. T., & Luhmann, C. C. (2013). Adaptive intertemporal preferences in foraging-style environments. Frontiers in Neuroscience, 7, 93.PubMedPubMedCentral
go back to reference Boccignone, G., & Ferraro, M. (2004). Modelling gaze shift as a constrained random walk. Physica A: Statistical Mechanics and its Applications, 331, 207–218. Boccignone, G., & Ferraro, M. (2004). Modelling gaze shift as a constrained random walk. Physica A: Statistical Mechanics and its Applications, 331, 207–218.
go back to reference Bowers, J. S., & Davis, C. J. (2012). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138(3), 389–414.PubMed Bowers, J. S., & Davis, C. J. (2012). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138(3), 389–414.PubMed
go back to reference Brockmann, D., & Geisel, T. (2000). The ecology of gaze shifts. Neurocomputing, 32–33, 643–650. Brockmann, D., & Geisel, T. (2000). The ecology of gaze shifts. Neurocomputing, 32–33, 643–650.
go back to reference Brown, C. T., Liebovitch, L. S., & Glendon, R. (2007). Lévy flights in dobe ju/’hoansi foraging patterns. Human Ecology, 35(1), 129–138. Brown, C. T., Liebovitch, L. S., & Glendon, R. (2007). Lévy flights in dobe ju/’hoansi foraging patterns. Human Ecology, 35(1), 129–138.
go back to reference Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A Bayesian optimal foraging model of human visual search. Psychological Science, 23(9), 1047–1054.PubMed Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A Bayesian optimal foraging model of human visual search. Psychological Science, 23(9), 1047–1054.PubMed
go back to reference Cassini, M. H., Kacelnik, A., & Segura, E. T. (1990). The tale of the screaming hairy armadillo, the guinea pig and the marginal value theorem. Animal Behavior, 39, 1030–1050. Cassini, M. H., Kacelnik, A., & Segura, E. T. (1990). The tale of the screaming hairy armadillo, the guinea pig and the marginal value theorem. Animal Behavior, 39, 1030–1050.
go back to reference Cassini, M. H., Lichtenstein, G., Ongay, J. P., & Kacelnik, A. (1993). Foraging behavior in guinea pigs: Further tests of the marginal value theorem. Behavioral Processes, 29, 99–112. Cassini, M. H., Lichtenstein, G., Ongay, J. P., & Kacelnik, A. (1993). Foraging behavior in guinea pigs: Further tests of the marginal value theorem. Behavioral Processes, 29, 99–112.
go back to reference Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 129–136.PubMed Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 129–136.PubMed
go back to reference Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost time in a patch-foraging task. Cognitive, Affective and Behavioral Neuroscience, 15(4), 837–853.PubMed Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost time in a patch-foraging task. Cognitive, Affective and Behavioral Neuroscience, 15(4), 837–853.PubMed
go back to reference Cowie, R. J. (1977). Optimal foraging in great tits (Parus major). Nature, 268, 137–139. Cowie, R. J. (1977). Optimal foraging in great tits (Parus major). Nature, 268, 137–139.
go back to reference Crook, K. A., & Davoren, G. K. (2014). Underwater behaviour of common murres foraging on capelin: Influences of prey density and antipredator behaviour. Marine Ecology Progress Series, 501, 279–290. Crook, K. A., & Davoren, G. K. (2014). Underwater behaviour of common murres foraging on capelin: Influences of prey density and antipredator behaviour. Marine Ecology Progress Series, 501, 279–290.
go back to reference Cunha, M., & Caldieraro, F. (2009). Sunk-cost effects on purely behavioral investments. Cognitive Science, 33, 105–113.PubMed Cunha, M., & Caldieraro, F. (2009). Sunk-cost effects on purely behavioral investments. Cognitive Science, 33, 105–113.PubMed
go back to reference Cuthill, I. C., Haccou, P., & Kacelnik, A. (1994). Starlings (Sturnus vulgaris) exploiting patches: Response to long-term changes in travel time. Behavioral Ecology, 5(1), 81–90. Cuthill, I. C., Haccou, P., & Kacelnik, A. (1994). Starlings (Sturnus vulgaris) exploiting patches: Response to long-term changes in travel time. Behavioral Ecology, 5(1), 81–90.
go back to reference Da Silveira, N. S., Niebuhr, B. B. S., Muylaert, R. L., Ribeiro, M. C., & Pizo, M. A. (2016). Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLoS ONE, 11(6), e0156688.PubMedPubMedCentral Da Silveira, N. S., Niebuhr, B. B. S., Muylaert, R. L., Ribeiro, M. C., & Pizo, M. A. (2016). Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLoS ONE, 11(6), e0156688.PubMedPubMedCentral
go back to reference Dall, S. R. X., Giraldeau, L. A., Olsson, O., McNamara, J., & Stephens, D. W. (2005). Information and its use by animals in evolutionary ecology. Trends in Ecology and Evolution, 20(4), 187–193.PubMed Dall, S. R. X., Giraldeau, L. A., Olsson, O., McNamara, J., & Stephens, D. W. (2005). Information and its use by animals in evolutionary ecology. Trends in Ecology and Evolution, 20(4), 187–193.PubMed
go back to reference Davidson, J. D., & El-Hadi, A. (2019). Foraging as an evidence accumulation process. PLoS Computational Biology, 15(7), e1007060.PubMedPubMedCentral Davidson, J. D., & El-Hadi, A. (2019). Foraging as an evidence accumulation process. PLoS Computational Biology, 15(7), e1007060.PubMedPubMedCentral
go back to reference Dawkins, R., & Carlisle, T. R. (1976). Parental investment, mate desertion, and a fallacy. Nature, 262, 131–133. Dawkins, R., & Carlisle, T. R. (1976). Parental investment, mate desertion, and a fallacy. Nature, 262, 131–133.
go back to reference De Knegt, H. J., Hengeveld, H. J., van Langevelde, F., de Boer, W. F., & Kirkman, K. P. (2007). Patch density determines movement patterns and foraging efficiency of large herbivores. Behavioral Ecology, 18(6), 1065–1072. De Knegt, H. J., Hengeveld, H. J., van Langevelde, F., de Boer, W. F., & Kirkman, K. P. (2007). Patch density determines movement patterns and foraging efficiency of large herbivores. Behavioral Ecology, 18(6), 1065–1072.
go back to reference Devries, D. R., Stein, R. A., & Chesson, P. L. (1989). Sunfish foraging among patches: The patch-departure decision. Animal Behavior, 37, 455–464. Devries, D. R., Stein, R. A., & Chesson, P. L. (1989). Sunfish foraging among patches: The patch-departure decision. Animal Behavior, 37, 455–464.
go back to reference Edwards, A. M. (2011). Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecology, 92(6), 1247–1257.PubMed Edwards, A. M. (2011). Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecology, 92(6), 1247–1257.PubMed
go back to reference Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., Buldyrev, S. V., da Luz, M. G. E., Raposo, E. P., Stanley, H. E., & Viswanathan, G. M. (2007). Revisiting Lévy flights search patterns of wandering albatrosses, bumblebees and deer. Nature, 449, 1044–1045.PubMed Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., Buldyrev, S. V., da Luz, M. G. E., Raposo, E. P., Stanley, H. E., & Viswanathan, G. M. (2007). Revisiting Lévy flights search patterns of wandering albatrosses, bumblebees and deer. Nature, 449, 1044–1045.PubMed
go back to reference Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? Optimal foraging in guided visual search. Attention, Perception & Psychophysics, 78, 2135–2151. Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? Optimal foraging in guided visual search. Attention, Perception & Psychophysics, 78, 2135–2151.
go back to reference Eliassen, S., Jorgensen, C., Mangel, M., & Giske, J. (2007). Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. Oikos, 116(3), 513–523. Eliassen, S., Jorgensen, C., Mangel, M., & Giske, J. (2007). Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. Oikos, 116(3), 513–523.
go back to reference Eliassen, S., Jorgensen, C., Mangel, M., & Giske, J. (2009). Quantifying the adaptive value of learning in foraging behavior. The American Naturalist, 174(4), 478–489.PubMed Eliassen, S., Jorgensen, C., Mangel, M., & Giske, J. (2009). Quantifying the adaptive value of learning in foraging behavior. The American Naturalist, 174(4), 478–489.PubMed
go back to reference Fauchald, P., & Tveraa, T. (2003). Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology, 84(2), 282–288. Fauchald, P., & Tveraa, T. (2003). Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology, 84(2), 282–288.
go back to reference Ferguson, T. S. (1989). Who solved the secretary problem? Statistical Science, 4(3), 282–296. Ferguson, T. S. (1989). Who solved the secretary problem? Statistical Science, 4(3), 282–296.
go back to reference Ferreira, A. S., Raposo, E. P., Viswanathan, G. M., & Da Luz, M. G. E. (2014). The influence of environment on Lévy ransom search efficiency: Fractality and memory effects. Physica A: Statistical Mechanics and its Applications, 391(11), 3234–3246. Ferreira, A. S., Raposo, E. P., Viswanathan, G. M., & Da Luz, M. G. E. (2014). The influence of environment on Lévy ransom search efficiency: Fractality and memory effects. Physica A: Statistical Mechanics and its Applications, 391(11), 3234–3246.
go back to reference Fougnie, D., Cormiea, S. M., Zhang, J., Alvarez, G. A., & Wolfe, J. M. (2015). Winter is coming: How humans forage in a temporally structured environment. Journal of Vision, 15(11), 1–11.PubMedPubMedCentral Fougnie, D., Cormiea, S. M., Zhang, J., Alvarez, G. A., & Wolfe, J. M. (2015). Winter is coming: How humans forage in a temporally structured environment. Journal of Vision, 15(11), 1–11.PubMedPubMedCentral
go back to reference Franken, I. H. A., van Strien, J. W., Nijs, I., & Muris, P. (2008). Impulsivity is associated with behavioral decision-making processes. Psychiatry Research, 158(2), 155–163.PubMed Franken, I. H. A., van Strien, J. W., Nijs, I., & Muris, P. (2008). Impulsivity is associated with behavioral decision-making processes. Psychiatry Research, 158(2), 155–163.PubMed
go back to reference Fronhofer, E. A., Hovestadt, T., & Poethke, H. J. (2013). From random walks to informed movement. Oikos, 122(6), 857–866. Fronhofer, E. A., Hovestadt, T., & Poethke, H. J. (2013). From random walks to informed movement. Oikos, 122(6), 857–866.
go back to reference Fu, W. T. (2012). From Plato to the world wide web: Information foraging on the internet. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: Evolution, algorithms, and the brain (pp. 283–299). MIT Press. Fu, W. T. (2012). From Plato to the world wide web: Information foraging on the internet. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: Evolution, algorithms, and the brain (pp. 283–299). MIT Press.
go back to reference Gil-Gómez de Liaño, B., Quirós-Godoy, M., Pérez-Hernández, E., Cain, M., & Wolfe, J. M. (2018). Understanding visual search and foraging in cognitive development. Journal of Vision, 18(10), 635. Gil-Gómez de Liaño, B., Quirós-Godoy, M., Pérez-Hernández, E., Cain, M., & Wolfe, J. M. (2018). Understanding visual search and foraging in cognitive development. Journal of Vision, 18(10), 635.
go back to reference Gil-Gómez de Liaño, B., Quirós-Godoy, M., Pérez-Hernández, E., & Wolfe, J. M. (2020). Efficiency and accuracy of visual search develop at different rates from early childhood through early adulthood. Psychonomic Bulletin & Review, 27(3), 504–511. Gil-Gómez de Liaño, B., Quirós-Godoy, M., Pérez-Hernández, E., & Wolfe, J. M. (2020). Efficiency and accuracy of visual search develop at different rates from early childhood through early adulthood. Psychonomic Bulletin & Review, 27(3), 504–511.
go back to reference Giraldeau, L. A., & Kramer, D. L. (1982). The marginal value theorem: A quantitative test using load size variation in a central place forager, the Eastern chipmunk, Tamias striatus. Animal Behavior, 30, 1036–1042. Giraldeau, L. A., & Kramer, D. L. (1982). The marginal value theorem: A quantitative test using load size variation in a central place forager, the Eastern chipmunk, Tamias striatus. Animal Behavior, 30, 1036–1042.
go back to reference Green, R. F. (1980). Bayesian birds: A simple example of Oaten’s stochastic model of optimal foraging. Theoretical Population Biology, 18, 244–256. Green, R. F. (1980). Bayesian birds: A simple example of Oaten’s stochastic model of optimal foraging. Theoretical Population Biology, 18, 244–256.
go back to reference Green, R. F. (1984). Stopping rules for optimal foragers. The American Naturalist, 123, 30–40. Green, R. F. (1984). Stopping rules for optimal foragers. The American Naturalist, 123, 30–40.
go back to reference Grobelny, J., Michalski, R., & Weron, R. (2015) Is human visual activity in simple human-computer interaction search tasks a Lévy flight? In Proceedings of the 2nd international conference on physiological computing systems (pp. 67–71). Grobelny, J., Michalski, R., & Weron, R. (2015) Is human visual activity in simple human-computer interaction search tasks a Lévy flight? In Proceedings of the 2nd international conference on physiological computing systems (pp. 67–71).
go back to reference Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception & Psychophysics, 72(3), 561–582. Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception & Psychophysics, 72(3), 561–582.
go back to reference Hamer, K. C., Humphreys, E. M., Magalhaes, M. C., Garthe, S., Hennicke, J., Peters, G., Gremillet, D., Skov, H., & Wanless, S. (2009). Fine-scale foraging behaviour of a medium-ranger marine predator. Journal of Animal Ecology, 78(4), 880–889. Hamer, K. C., Humphreys, E. M., Magalhaes, M. C., Garthe, S., Hennicke, J., Peters, G., Gremillet, D., Skov, H., & Wanless, S. (2009). Fine-scale foraging behaviour of a medium-ranger marine predator. Journal of Animal Ecology, 78(4), 880–889.
go back to reference Haskell, D. G. (1997). Experiments and a model examining learning in the area-restricted search behavior of ferrets (Mustela putorius furo). Behavioral Ecology, 8(4), 448–455. Haskell, D. G. (1997). Experiments and a model examining learning in the area-restricted search behavior of ferrets (Mustela putorius furo). Behavioral Ecology, 8(4), 448–455.
go back to reference Hayward, M. W., Ortmann, S., & Kowalczyk, R. (2015). Risk perception by endangered European bison Bison bonasus is context (condition) dependent. Landscape Ecology, 30(10), 2079–2093. Hayward, M. W., Ortmann, S., & Kowalczyk, R. (2015). Risk perception by endangered European bison Bison bonasus is context (condition) dependent. Landscape Ecology, 30(10), 2079–2093.
go back to reference Hemingway, C. T., Ryan, M. J., & Page, R. A. (2018). Cognitive constraints on optimal foraging in frog-eating bats. Animal Behavior, 143, 43–50. Hemingway, C. T., Ryan, M. J., & Page, R. A. (2018). Cognitive constraints on optimal foraging in frog-eating bats. Animal Behavior, 143, 43–50.
go back to reference Higginson, A. D., Fawcett, T. W., Houston, A. I., & McNamara, J. M. (2018). Trust your gut: Using physiological states as a source of information is almost as effective as optimal Bayesian learning. Proceedings of the Royal Society B, 285, 20172411.PubMedPubMedCentral Higginson, A. D., Fawcett, T. W., Houston, A. I., & McNamara, J. M. (2018). Trust your gut: Using physiological states as a source of information is almost as effective as optimal Bayesian learning. Proceedings of the Royal Society B, 285, 20172411.PubMedPubMedCentral
go back to reference Hill, S., Burrows, M. T., & Hughes, R. N. (2002). Adaptive search in juvenile plaice foraging for aggregated and dispersed prey. Journal of Fish Biology, 61(5), 1255–1267. Hill, S., Burrows, M. T., & Hughes, R. N. (2002). Adaptive search in juvenile plaice foraging for aggregated and dispersed prey. Journal of Fish Biology, 61(5), 1255–1267.
go back to reference Hills, T. T. (2006). Animal foraging and the evolution of goal-directed cognition. Cognitive Science, 30, 3–41.PubMed Hills, T. T. (2006). Animal foraging and the evolution of goal-directed cognition. Cognitive Science, 30, 3–41.PubMed
go back to reference Hills, T. T., & Adler, F. R. (2002). Time’s crooked arrow: Optimal foraging and rate-biased time perception. Animal Behaviour, 64(4), 589–597. Hills, T. T., & Adler, F. R. (2002). Time’s crooked arrow: Optimal foraging and rate-biased time perception. Animal Behaviour, 64(4), 589–597.
go back to reference Hills, T. T., & Hertwig, R. (2010). Information search in decisions from experience: Do our patterns of sampling foreshadow our decisions? Psychological Science, 21(12), 1787–1792.PubMed Hills, T. T., & Hertwig, R. (2010). Information search in decisions from experience: Do our patterns of sampling foreshadow our decisions? Psychological Science, 21(12), 1787–1792.PubMed
go back to reference Hills, T. T., Jones, M. N., & Todd, P. M. (2012). Optimal foraging in semantic memory. Psychological Review, 119(2), 431–440.PubMed Hills, T. T., Jones, M. N., & Todd, P. M. (2012). Optimal foraging in semantic memory. Psychological Review, 119(2), 431–440.PubMed
go back to reference Hills, T. T., Kallf, C., & Wiener, J. M. (2013). Adaptive Lévy processes and area-restricted search in human foraging. PLoS ONE, 8(4), e60488.PubMedPubMedCentral Hills, T. T., Kallf, C., & Wiener, J. M. (2013). Adaptive Lévy processes and area-restricted search in human foraging. PLoS ONE, 8(4), e60488.PubMedPubMedCentral
go back to reference Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., & The Cognitive Research Group. (2015). Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19(1), 46–54.PubMed Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., & The Cognitive Research Group. (2015). Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19(1), 46–54.PubMed
go back to reference Humphries, N. E., Queiroz, N., Ryer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghtom, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., Wearmouth, V. J., Southall, E. J., & Sims, D. W. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465, 1066–1069.PubMed Humphries, N. E., Queiroz, N., Ryer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghtom, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., Wearmouth, V. J., Southall, E. J., & Sims, D. W. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465, 1066–1069.PubMed
go back to reference Humphries, N. E., Schaefer, K. M., Fuller, D. W., Phillips, G. E. M., Wilding, C., & Sims, D. W. (2016). Scale-dependent to scale-free: Daily behavioral switching and optimized searching in a marine predator. Animal Behavior, 113, 189–201. Humphries, N. E., Schaefer, K. M., Fuller, D. W., Phillips, G. E. M., Wilding, C., & Sims, D. W. (2016). Scale-dependent to scale-free: Daily behavioral switching and optimized searching in a marine predator. Animal Behavior, 113, 189–201.
go back to reference Humphries, N. E., & Sims, D. W. (2014). Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. Journal of Theoretical Biology, 358, 179–193.PubMed Humphries, N. E., & Sims, D. W. (2014). Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. Journal of Theoretical Biology, 358, 179–193.PubMed
go back to reference Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J., & Sims, D. W. (2012). Foraging success of biological Lévy flights recorded in situ. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7169–7174.PubMedPubMedCentral Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J., & Sims, D. W. (2012). Foraging success of biological Lévy flights recorded in situ. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7169–7174.PubMedPubMedCentral
go back to reference Hutchinson, J. M. C., Stephens, D. W., Bateson, M., Couzin, I., Dukas, R., Giraldeau, L. A., Hills, T. T., Méry, F., & Winterhalder, B. (2012). Searching for fundamentals and commonalities of search. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive Search: Evolution, algorithms, and the brain (pp. 47–65). MIT Press. Hutchinson, J. M. C., Stephens, D. W., Bateson, M., Couzin, I., Dukas, R., Giraldeau, L. A., Hills, T. T., Méry, F., & Winterhalder, B. (2012). Searching for fundamentals and commonalities of search. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive Search: Evolution, algorithms, and the brain (pp. 47–65). MIT Press.
go back to reference Hutchinson, J. M. C., Wilke, A., & Todd, P. M. (2008). Patch leaving in humans: Can a generalist adapt its rules to dispersal across patches? Animal Behavior, 75, 1331–1349. Hutchinson, J. M. C., Wilke, A., & Todd, P. M. (2008). Patch leaving in humans: Can a generalist adapt its rules to dispersal across patches? Animal Behavior, 75, 1331–1349.
go back to reference Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning theory applied to human cognition. Cognitive Science, 2(1), 8–21.PubMed Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning theory applied to human cognition. Cognitive Science, 2(1), 8–21.PubMed
go back to reference Johánnesson, Ó. I., Kristjánsson, Á., & Thornton, I. M. (2017). Are foraging patterns related to working memory and inhibitory control? Japanese Psychological Research, 59(2), 152–166. Johánnesson, Ó. I., Kristjánsson, Á., & Thornton, I. M. (2017). Are foraging patterns related to working memory and inhibitory control? Japanese Psychological Research, 59(2), 152–166.
go back to reference Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34(4), 169–188. Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34(4), 169–188.
go back to reference Kacelnik, A., & Marsh, B. (2002). Cost can increase preference in starlings. Animal Behaviour, 63(2), 245–250. Kacelnik, A., & Marsh, B. (2002). Cost can increase preference in starlings. Animal Behaviour, 63(2), 245–250.
go back to reference Kagan, E., & Ben-Gal, I. (2015). Search and foraging: Individual motion and swarm dynamics. CRC Press. Kagan, E., & Ben-Gal, I. (2015). Search and foraging: Individual motion and swarm dynamics. CRC Press.
go back to reference Kallf, C., Hills, T. T., & Wiener, J. M. (2010). Human foraging behavior: A virtual reality investigation on area restricted search in humans. Proceedings of the Annual Meeting of the Cognitive Sciences Society, 32(32), 168–173. Kallf, C., Hills, T. T., & Wiener, J. M. (2010). Human foraging behavior: A virtual reality investigation on area restricted search in humans. Proceedings of the Annual Meeting of the Cognitive Sciences Society, 32(32), 168–173.
go back to reference Kareiva, P., & Odell, G. (1987). Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. The American Naturalist, 130(2), 233–270. Kareiva, P., & Odell, G. (1987). Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. The American Naturalist, 130(2), 233–270.
go back to reference Keasar, T., Shmida, A., & Motro, U. (1996). Innate movement rules in foraging bees: Flight distances are affected by recent rewards and are correlated with choice of flower type. Behavioral Ecology and Sociobiology, 39(6), 381–388. Keasar, T., Shmida, A., & Motro, U. (1996). Innate movement rules in foraging bees: Flight distances are affected by recent rewards and are correlated with choice of flower type. Behavioral Ecology and Sociobiology, 39(6), 381–388.
go back to reference Killeen, P. R., Palombo, G. M., Gottlob, L. R., & Beam, J. (1996). Bayesian analysis of foraging by pigeons (Columba livia). Journal of Experimental Psychology: Animal Behavior Processes, 22(4), 480–496.PubMed Killeen, P. R., Palombo, G. M., Gottlob, L. R., & Beam, J. (1996). Bayesian analysis of foraging by pigeons (Columba livia). Journal of Experimental Psychology: Animal Behavior Processes, 22(4), 480–496.PubMed
go back to reference Killeen, P. R., Smith, J. P., & Hanson, S. J. (1981). Central place foraging in Rattus norvegicus. Animal Behavior, 29, 64–70. Killeen, P. R., Smith, J. P., & Hanson, S. J. (1981). Central place foraging in Rattus norvegicus. Animal Behavior, 29, 64–70.
go back to reference Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(2), 712–719.PubMed Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(2), 712–719.PubMed
go back to reference Koelega, H. S. (1992). Extraversion and vigilance: 30 years of inconsistencies. Psychological Bulletin, 112(2), 239–258.PubMed Koelega, H. S. (1992). Extraversion and vigilance: 30 years of inconsistencies. Psychological Bulletin, 112(2), 239–258.PubMed
go back to reference Kölzsch, A., Alzate, A., Bartumeus, F., de Jager, M., Weerman, E. J., Hengeveld, G. M., Naguib, M., Nolet, B. A., & van de Koppel, J. (2015). Experimental evidence for inherent Lévy search behaviour in foraging animals. Proceedings of the Royal Society B, 282, 20150424.PubMedPubMedCentral Kölzsch, A., Alzate, A., Bartumeus, F., de Jager, M., Weerman, E. J., Hengeveld, G. M., Naguib, M., Nolet, B. A., & van de Koppel, J. (2015). Experimental evidence for inherent Lévy search behaviour in foraging animals. Proceedings of the Royal Society B, 282, 20150424.PubMedPubMedCentral
go back to reference Krebs, J. R., Ryan, J. C., & Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by chickadees. Animal Behavior, 22, 953–964. Krebs, J. R., Ryan, J. C., & Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by chickadees. Animal Behavior, 22, 953–964.
go back to reference Kristjánsson, Á. (2000). In search of remembrance: Evidence for memory in visual search. Psychological Science, 11(4), 328–332.PubMed Kristjánsson, Á. (2000). In search of remembrance: Evidence for memory in visual search. Psychological Science, 11(4), 328–332.PubMed
go back to reference Kristjánsson, Á., Björnsson, A. S., & Kristjánsson, T. (2020). Foraging with Anne Treisman: Features versus conjunctions, patch leaving and memory for foraged locations. Attention, Perception, & Psychophysics, 82, 818–831. Kristjánsson, Á., Björnsson, A. S., & Kristjánsson, T. (2020). Foraging with Anne Treisman: Features versus conjunctions, patch leaving and memory for foraged locations. Attention, Perception, & Psychophysics, 82, 818–831.
go back to reference Kristjánsson, Á., Johánnesson, Ó. I., & Thornton, I. M. (2014). Common attentional constraints in visual foraging. PLoS ONE, 9(6), e100752.PubMedPubMedCentral Kristjánsson, Á., Johánnesson, Ó. I., & Thornton, I. M. (2014). Common attentional constraints in visual foraging. PLoS ONE, 9(6), e100752.PubMedPubMedCentral
go back to reference Kristjánsson, Á., Ólafsdóttir, I. M., & Kristjánsson, T. (2019). Visual foraging tasks provide new insights into the orienting of visual attention: Methodological considerations. In S. Pollmann (Ed.), Spatial learning and attentional guidance (pp. 3–21). Humana. Kristjánsson, Á., Ólafsdóttir, I. M., & Kristjánsson, T. (2019). Visual foraging tasks provide new insights into the orienting of visual attention: Methodological considerations. In S. Pollmann (Ed.), Spatial learning and attentional guidance (pp. 3–21). Humana.
go back to reference Kristjánsson, T., & Kristjánsson, Á. (2018). Foraging through multiple targets reveals the flexibility of visual working memory. Acta Psychologica, 183, 108–115.PubMed Kristjánsson, T., & Kristjánsson, Á. (2018). Foraging through multiple targets reveals the flexibility of visual working memory. Acta Psychologica, 183, 108–115.PubMed
go back to reference Kristjánsson, T., Thornton, I. M., Chetverikov, A., & Kristjánsson, Á. (2020). Dynamics of visual attention revealed in foraging tasks. Cognition, 194, 104032.PubMed Kristjánsson, T., Thornton, I. M., Chetverikov, A., & Kristjánsson, Á. (2020). Dynamics of visual attention revealed in foraging tasks. Cognition, 194, 104032.PubMed
go back to reference Kristjánsson, T., Thornton, I. M., & Kristjánsson, Á. (2018). Time limits during visual foraging reveal flexible working memory templates. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 827–835.PubMed Kristjánsson, T., Thornton, I. M., & Kristjánsson, Á. (2018). Time limits during visual foraging reveal flexible working memory templates. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 827–835.PubMed
go back to reference Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian cognitive models. University Press. Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian cognitive models. University Press.
go back to reference Leising, A. W., & Franks, P. J. S. (2002). Does Acartia clausi (Copepoda Calanoida) use an area-restricted search foraging strategy to find food? Hydrobiologia, 480(1–3), 193–207. Leising, A. W., & Franks, P. J. S. (2002). Does Acartia clausi (Copepoda Calanoida) use an area-restricted search foraging strategy to find food? Hydrobiologia, 480(1–3), 193–207.
go back to reference Lenow, J. K., Constantino, S. M., Daw, N. D., & Phelps, E. A. (2017). Chronic and acute stress promote overexploitation in serial decision making. The Journal of Neuroscience, 37(23), 5681–5689.PubMedPubMedCentral Lenow, J. K., Constantino, S. M., Daw, N. D., & Phelps, E. A. (2017). Chronic and acute stress promote overexploitation in serial decision making. The Journal of Neuroscience, 37(23), 5681–5689.PubMedPubMedCentral
go back to reference Lihoreau, M., Ings, T. C., Chittka, L., & Reynolds, A. M. (2016). Signatures of a global optimal searching strategy in the three-dimensional foraging flights of bumblebees. Scientific Reports, 6, 30401.PubMedPubMedCentral Lihoreau, M., Ings, T. C., Chittka, L., & Reynolds, A. M. (2016). Signatures of a global optimal searching strategy in the three-dimensional foraging flights of bumblebees. Scientific Reports, 6, 30401.PubMedPubMedCentral
go back to reference Lode, T. (2000). Functional response and area-restricted search in a predator: Seasonal exploitation of anurans by the European polecat, Mustela putorius. Austral Ecology, 25(3), 223–231. Lode, T. (2000). Functional response and area-restricted search in a predator: Seasonal exploitation of anurans by the European polecat, Mustela putorius. Austral Ecology, 25(3), 223–231.
go back to reference Magalhaes, P., & White, K. G. (2014). The effect of a prior investment on choice: The sunk cost effect. Journal of Experimental Psychology: Animal Learning and Cognition, 40(1), 22–37. Magalhaes, P., & White, K. G. (2014). The effect of a prior investment on choice: The sunk cost effect. Journal of Experimental Psychology: Animal Learning and Cognition, 40(1), 22–37.
go back to reference Marcus, G. F., & Davis, E. (2013). How robust are probabilistic models of higher-level cognition? Psychological Science, 24(12), 2351–2360.PubMed Marcus, G. F., & Davis, E. (2013). How robust are probabilistic models of higher-level cognition? Psychological Science, 24(12), 2351–2360.PubMed
go back to reference Marell, A., Ball, J. P., & Hofgaard, A. (2002). Foraging and movement paths of female reindeer: Insights from fractal analysis, correlated random walks, and Lévy flights. Canadian Journal of Zoology, 80(5), 854–865. Marell, A., Ball, J. P., & Hofgaard, A. (2002). Foraging and movement paths of female reindeer: Insights from fractal analysis, correlated random walks, and Lévy flights. Canadian Journal of Zoology, 80(5), 854–865.
go back to reference Marshall, H. H., Carter, A. J., Ashford, A., Rowcliffe, J. M., & Cowlishaw, G. (2013). How do foragers decide when to leave a patch? A test of alternative models under natural and experimental conditions. Journal of Animal Ecology, 82, 894–902. Marshall, H. H., Carter, A. J., Ashford, A., Rowcliffe, J. M., & Cowlishaw, G. (2013). How do foragers decide when to leave a patch? A test of alternative models under natural and experimental conditions. Journal of Animal Ecology, 82, 894–902.
go back to reference Mata, R., Wilke, A., & Czienskowski, U. (2009). Cognitive aging and adaptive foraging behavior. Journal of Gerontology: Psychological Sciences, 64B(4), 474–481. Mata, R., Wilke, A., & Czienskowski, U. (2009). Cognitive aging and adaptive foraging behavior. Journal of Gerontology: Psychological Sciences, 64B(4), 474–481.
go back to reference Mata, R., Wilke, A., & Czienskowski, U. (2013). Foraging across the life span: Is there a reduction in exploration with aging? Frontiers in Neuroscience, 7, 53.PubMedPubMedCentral Mata, R., Wilke, A., & Czienskowski, U. (2013). Foraging across the life span: Is there a reduction in exploration with aging? Frontiers in Neuroscience, 7, 53.PubMedPubMedCentral
go back to reference Mazur, J. E., & Vaughan, W. (1987). Molar optimization versus delayed reinforcement as explanations of choice between fixed-ratio and progressive-ratio schedules. Journal of the Experimental Analysis of Behavior, 48, 251–261.PubMedPubMedCentral Mazur, J. E., & Vaughan, W. (1987). Molar optimization versus delayed reinforcement as explanations of choice between fixed-ratio and progressive-ratio schedules. Journal of the Experimental Analysis of Behavior, 48, 251–261.PubMedPubMedCentral
go back to reference McArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100, 603–609. McArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100, 603–609.
go back to reference McEvoy, J. F., Hall, G. P., & McDonald, P. G. (2019). Movements of Australian Wood Ducks (Chenonetta jubata) in an agricultural landcape. Emu-Austral Ornithology, 119(2), 147–156. McEvoy, J. F., Hall, G. P., & McDonald, P. G. (2019). Movements of Australian Wood Ducks (Chenonetta jubata) in an agricultural landcape. Emu-Austral Ornithology, 119(2), 147–156.
go back to reference McNair, J. N. (1982). Optimal giving-up time rules and the marginal value theorem. The American Naturalist, 119(4), 511–529. McNair, J. N. (1982). Optimal giving-up time rules and the marginal value theorem. The American Naturalist, 119(4), 511–529.
go back to reference McNamara, J. (1982). Optimal patch use in a stochastic environment. Theoretical Population Biology, 21, 269–288. McNamara, J. (1982). Optimal patch use in a stochastic environment. Theoretical Population Biology, 21, 269–288.
go back to reference McNamara, J., Green, R., & Olsson, O. (2006). Bayes’ theorem and its application in animal behavior. Oikos, 112, 243–251. McNamara, J., Green, R., & Olsson, O. (2006). Bayes’ theorem and its application in animal behavior. Oikos, 112, 243–251.
go back to reference McNamara, J., & Houston, A. I. (1980). The application of statistical decision theory to animal behavior. Journal of Theoretical Biology, 85, 673–690.PubMed McNamara, J., & Houston, A. I. (1980). The application of statistical decision theory to animal behavior. Journal of Theoretical Biology, 85, 673–690.PubMed
go back to reference Mehlhorn, K., Newell, B. R., Todd, P. M., Lee, M. D., Morgan, K., Braithwaite, V. A., Hausmann, D., Fiedler, K., & Gonzalez, C. (2015). Unpacking the exploration-exploitation tradeoff: A synthesis of human an animal literatures. Decision, 2(3), 191. Mehlhorn, K., Newell, B. R., Todd, P. M., Lee, M. D., Morgan, K., Braithwaite, V. A., Hausmann, D., Fiedler, K., & Gonzalez, C. (2015). Unpacking the exploration-exploitation tradeoff: A synthesis of human an animal literatures. Decision, 2(3), 191.
go back to reference Mekern, V. N., Sjoerds, Z., & Hommel, B. (2019). How metacontrol biases and adaptivity impact performance in cognitive search tasks. Cognition, 182, 251–259.PubMed Mekern, V. N., Sjoerds, Z., & Hommel, B. (2019). How metacontrol biases and adaptivity impact performance in cognitive search tasks. Cognition, 182, 251–259.PubMed
go back to reference Miramontes, O., De Souza, O., Hernández, D., & Ceccon, E. (2012). Non-Lévy mobility patterns of Mexican Me’Phaa peasants searching for fuel wood. Human Ecology, 40(2), 167–174. Miramontes, O., De Souza, O., Hernández, D., & Ceccon, E. (2012). Non-Lévy mobility patterns of Mexican Me’Phaa peasants searching for fuel wood. Human Ecology, 40(2), 167–174.
go back to reference Newton, T., Slade, P., Butler, N., & Murphy, P. (1992). Personality and performance on a simple visual search task. Personality and Individual Differences, 13(3), 381–382. Newton, T., Slade, P., Butler, N., & Murphy, P. (1992). Personality and performance on a simple visual search task. Personality and Individual Differences, 13(3), 381–382.
go back to reference Nolet, B. A., & Mooij, W. M. (2002). Search paths of swans foraging on spatially autocorrelated tubers. Journal of Animal Ecology, 71(3), 451–462. Nolet, B. A., & Mooij, W. M. (2002). Search paths of swans foraging on spatially autocorrelated tubers. Journal of Animal Ecology, 71(3), 451–462.
go back to reference Nolting, B. C. (2013) Random search models of foraging behavior: Theory, simulation, and observation. Doctoral Dissertation. University of Nebraska-Lincoln. Nolting, B. C. (2013) Random search models of foraging behavior: Theory, simulation, and observation. Doctoral Dissertation. University of Nebraska-Lincoln.
go back to reference Nolting, B. C., Hinkelman, T. M., Brassil, C. E., & Tehumberg, B. (2015). Composite random search strategies based on non-directional sensory cues. Ecological Complexity, 22, 126–138. Nolting, B. C., Hinkelman, T. M., Brassil, C. E., & Tehumberg, B. (2015). Composite random search strategies based on non-directional sensory cues. Ecological Complexity, 22, 126–138.
go back to reference Nonacs, P. (2001). State dependent behavior and the marginal value theorem. Behavioral Ecology, 12(1), 71–83. Nonacs, P. (2001). State dependent behavior and the marginal value theorem. Behavioral Ecology, 12(1), 71–83.
go back to reference Nonacs, P., & Soriano, J. L. (1998). Patch sampling behaviour and future foraging expectations in Argentine Ants, linepithema humile. Animal Behavior, 55(3), 519–527. Nonacs, P., & Soriano, J. L. (1998). Patch sampling behaviour and future foraging expectations in Argentine Ants, linepithema humile. Animal Behavior, 55(3), 519–527.
go back to reference Oaten, A. (1977). Optimal foraging in patches: A case for stochasticity. Theoretical Population Biology, 12, 263–285.PubMed Oaten, A. (1977). Optimal foraging in patches: A case for stochasticity. Theoretical Population Biology, 12, 263–285.PubMed
go back to reference Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Science, 15(7), 327–334. Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Science, 15(7), 327–334.
go back to reference Olsson, O., & Brown, J. S. (2006). The foraging benefits of information and the penalty of ignorance. Oikos, 112, 260–273. Olsson, O., & Brown, J. S. (2006). The foraging benefits of information and the penalty of ignorance. Oikos, 112, 260–273.
go back to reference Olsson, O., & Brown, J. S. (2010). Smart, smarter, smartest: foraging information states and coexistence. Oikos, 119, 292–303. Olsson, O., & Brown, J. S. (2010). Smart, smarter, smartest: foraging information states and coexistence. Oikos, 119, 292–303.
go back to reference Olsson, O., & Holmgren, N. M. A. (1998). The survival-rate-maximizing policy for Bayesian foragers: Wait for good news. Behavioral Ecology, 9(4), 345–353. Olsson, O., & Holmgren, N. M. A. (1998). The survival-rate-maximizing policy for Bayesian foragers: Wait for good news. Behavioral Ecology, 9(4), 345–353.
go back to reference Osborne, J. L., Smith, A., Clark, S. J., Reynolds, D. R., Barron, M. C., Lim, K. S., & Reynolds, A. M. (2013). The ontogeny of bumblebee flight trajectories: From naïve explorers to expert foragers. PLoS ONE, 8(11), e78681.PubMedPubMedCentral Osborne, J. L., Smith, A., Clark, S. J., Reynolds, D. R., Barron, M. C., Lim, K. S., & Reynolds, A. M. (2013). The ontogeny of bumblebee flight trajectories: From naïve explorers to expert foragers. PLoS ONE, 8(11), e78681.PubMedPubMedCentral
go back to reference Pacheco-Cobos, L., Winterhalder, B., Cuatianquiz-Lima, C., Rosetti, M. F., Hudson, R., & Ross, C. (2019). Nahua mushroom gatherers use area-restricted search strategies that conform to marginal value theorem predictions. Proceedings of the National Academy of Sciences, 116(21), 10339–10347. Pacheco-Cobos, L., Winterhalder, B., Cuatianquiz-Lima, C., Rosetti, M. F., Hudson, R., & Ross, C. (2019). Nahua mushroom gatherers use area-restricted search strategies that conform to marginal value theorem predictions. Proceedings of the National Academy of Sciences, 116(21), 10339–10347.
go back to reference Pachur, T., Raaijmakers, J. G. W., Davelaar, E. J., Daw, N. D., Dougherty, M. R., Hommel, B., Lee, M. D., Polyn, S. M., Ridderinkhoff, K. R., Todd, P. M., & Wolfe, J. M. (2012). Unpacking cognitive search: Mechanisms and processes. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: Evolution, algorithms, and the brain (pp. 237–253). MIT Press. Pachur, T., Raaijmakers, J. G. W., Davelaar, E. J., Daw, N. D., Dougherty, M. R., Hommel, B., Lee, M. D., Polyn, S. M., Ridderinkhoff, K. R., Todd, P. M., & Wolfe, J. M. (2012). Unpacking cognitive search: Mechanisms and processes. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: Evolution, algorithms, and the brain (pp. 237–253). MIT Press.
go back to reference Paiva, V. H., Geraldes, P., Ramirez, I., Garthe, S., & Ramos, J. A. (2010). How area-restricted search of a pelagic seabird changes while performing a dual foraging strategy. Oikos, 119(9), 1423–1434. Paiva, V. H., Geraldes, P., Ramirez, I., Garthe, S., & Ramos, J. A. (2010). How area-restricted search of a pelagic seabird changes while performing a dual foraging strategy. Oikos, 119(9), 1423–1434.
go back to reference Palyulin, V. V., Chechkin, A. V., & Metzner, R. (2014). Lévy flights do not always optimize random blind search for sparse targets. Proceedings of the National Academy of Sciences, 111(8), 2931–2936. Palyulin, V. V., Chechkin, A. V., & Metzner, R. (2014). Lévy flights do not always optimize random blind search for sparse targets. Proceedings of the National Academy of Sciences, 111(8), 2931–2936.
go back to reference Papastamatiou, Y. P., Desalles, P. A., & McCauley, D. J. (2012). Area-restricted searching by manta rays and their response to spatial scale in lagoon habitats. Marine Ecology Progress Series, 456, 233–244. Papastamatiou, Y. P., Desalles, P. A., & McCauley, D. J. (2012). Area-restricted searching by manta rays and their response to spatial scale in lagoon habitats. Marine Ecology Progress Series, 456, 233–244.
go back to reference Pattison, K. F., Zentall, T. R., & Watanabe, S. (2014). Sunk cost: Pigeons (Columba livia), too, show bias to complete a task rather than shift to another. Journal of Comparative Psychology, 126(1), 1–9. Pattison, K. F., Zentall, T. R., & Watanabe, S. (2014). Sunk cost: Pigeons (Columba livia), too, show bias to complete a task rather than shift to another. Journal of Comparative Psychology, 126(1), 1–9.
go back to reference Payne, J. W. (1976). Task complexity and contingent processing in decision making: An information search and protocol analysis. Organizational Behavior and Human Performance, 16(2), 366–387. Payne, J. W. (1976). Task complexity and contingent processing in decision making: An information search and protocol analysis. Organizational Behavior and Human Performance, 16(2), 366–387.
go back to reference Peltier, C., & Becker, M. W. (2017). Individual differences predict low prevalence visual search performance. Cognitive Research: Principles and Implications, 2(5), 1–11. Peltier, C., & Becker, M. W. (2017). Individual differences predict low prevalence visual search performance. Cognitive Research: Principles and Implications, 2(5), 1–11.
go back to reference Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287–292.PubMed Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287–292.PubMed
go back to reference Pierce, G. J., & Ollason, J. G. (1987). Eight reasons why optimal foraging theory is a complete waste of time. Oikos, 49, 111–117. Pierce, G. J., & Ollason, J. G. (1987). Eight reasons why optimal foraging theory is a complete waste of time. Oikos, 49, 111–117.
go back to reference Pinaud, C., & Weimerskirch, H. (2007). At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: A comparative study. Journal of Animal Ecology, 76(1), 9–19. Pinaud, C., & Weimerskirch, H. (2007). At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: A comparative study. Journal of Animal Ecology, 76(1), 9–19.
go back to reference Plank, M. J., & James, A. (2008). Optimal foraging: Lévy pattern or process? Journal of the Royal Society Interface, 5, 26. Plank, M. J., & James, A. (2008). Optimal foraging: Lévy pattern or process? Journal of the Royal Society Interface, 5, 26.
go back to reference Pyke, G. H. (1978). Optimal Foraging in hummingbirds: Testing the Marginal Value Theorem. The American Zoologist, 18, 739–752. Pyke, G. H. (1978). Optimal Foraging in hummingbirds: Testing the Marginal Value Theorem. The American Zoologist, 18, 739–752.
go back to reference Pyke, G. H. (2015). Understanding movements of organisms: It’s time to abandon the Lévy-foraging hypothesis. Methods in Ecology and Evolution, 6(1), 1–16. Pyke, G. H. (2015). Understanding movements of organisms: It’s time to abandon the Lévy-foraging hypothesis. Methods in Ecology and Evolution, 6(1), 1–16.
go back to reference Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. The Quarterly Review of Biology, 52(2), 137–154. Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. The Quarterly Review of Biology, 52(2), 137–154.
go back to reference Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z. P., Marloew, F. W., & Pontzer, H. (2014). Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 728–733.PubMed Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z. P., Marloew, F. W., & Pontzer, H. (2014). Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 728–733.PubMed
go back to reference Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., & Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movement of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology, 55(3), 223–230. Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., & Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movement of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology, 55(3), 223–230.
go back to reference Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
go back to reference Reynolds, A. (2012). Distinguishing between Lévy walks and strong alternative models. Ecology, 93(5), 1228–1233.PubMed Reynolds, A. (2012). Distinguishing between Lévy walks and strong alternative models. Ecology, 93(5), 1228–1233.PubMed
go back to reference Reynolds, A. M., Paiva, V. H., Cecere, J. G., & Focardi, S. (2016). Lévy patterns in seabirds are multifaceted describing both spatial and temporal patterning. Frontiers in Zoology, 13(29), 1–12. Reynolds, A. M., Paiva, V. H., Cecere, J. G., & Focardi, S. (2016). Lévy patterns in seabirds are multifaceted describing both spatial and temporal patterning. Frontiers in Zoology, 13(29), 1–12.
go back to reference Reynolds, A. M., Swain, J. L., Smith, A. D., Martin, A. P., & Osborne, J. L. (2009). Honeybees use a Lévy flight search strategy and odour-mediated anemotaxis to relocate food sources. Behavioral Ecology and Sociobiology, 64(1), 115–123. Reynolds, A. M., Swain, J. L., Smith, A. D., Martin, A. P., & Osborne, J. L. (2009). Honeybees use a Lévy flight search strategy and odour-mediated anemotaxis to relocate food sources. Behavioral Ecology and Sociobiology, 64(1), 115–123.
go back to reference Ross, C., Pacheco-Cobos, L., & Winterhalder, B. (2018). A general model of forager search: Adaptive encounter-conditional heuristics outperform Lévy flights in the search for patchily distributed prey. Journal of Theoretical Biology, 455, 357–369.PubMed Ross, C., Pacheco-Cobos, L., & Winterhalder, B. (2018). A general model of forager search: Adaptive encounter-conditional heuristics outperform Lévy flights in the search for patchily distributed prey. Journal of Theoretical Biology, 455, 357–369.PubMed
go back to reference Ross, C., & Winterhalder, B. (2018). Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters. PLoS ONE, 13(12), e0207633.PubMedPubMedCentral Ross, C., & Winterhalder, B. (2018). Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters. PLoS ONE, 13(12), e0207633.PubMedPubMedCentral
go back to reference Samu, F. (1993). Wolf spider feeding strategies: Optimality of prey consumption in Pardosa Hortensis. Oecologia, 94(1), 139–145.PubMed Samu, F. (1993). Wolf spider feeding strategies: Optimality of prey consumption in Pardosa Hortensis. Oecologia, 94(1), 139–145.PubMed
go back to reference Sang, K. (2017) Modeling exploration/exploitation behavior and the effect of individual differences. Doctoral Dissertation. Indiana University. Sang, K. (2017) Modeling exploration/exploitation behavior and the effect of individual differences. Doctoral Dissertation. Indiana University.
go back to reference Schreirer, A. L., & Grove, M. (2014). Recurrent patterning in the daily foraging routes of Hamadryas baboons (Papyo hamadryas): Spatial memory in large-scale versus small-scale space. American Journal of Primatology, 76(5), 421–435. Schreirer, A. L., & Grove, M. (2014). Recurrent patterning in the daily foraging routes of Hamadryas baboons (Papyo hamadryas): Spatial memory in large-scale versus small-scale space. American Journal of Primatology, 76(5), 421–435.
go back to reference Shlesinger, M. F. (2009). Random searching. Journal of Physics A: Mathematical and Theoretical, 42(43), 434001. Shlesinger, M. F. (2009). Random searching. Journal of Physics A: Mathematical and Theoretical, 42(43), 434001.
go back to reference Shlesinger, M. F., & Klafter, J. (1986). Lévy walks versus Lévy flights. In H. E. Stanley & N. Ostrowsky (Eds.), On growth and form. Fractal and non-fractal patterns in physics. Martinus Nijhoff Publishers. Shlesinger, M. F., & Klafter, J. (1986). Lévy walks versus Lévy flights. In H. E. Stanley & N. Ostrowsky (Eds.), On growth and form. Fractal and non-fractal patterns in physics. Martinus Nijhoff Publishers.
go back to reference Shore, D. I., & Klein, R. M. (2000). On the manifestations of memory in visual search. Spatial Vision, 14(1), 59–75.PubMed Shore, D. I., & Klein, R. M. (2000). On the manifestations of memory in visual search. Spatial Vision, 14(1), 59–75.PubMed
go back to reference Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., James, A., Ahmed, M. Z., Brierley, A. S., Hindell, M. A., Morrit, D., Musyl, M. K., Righton, D., Shepard, E. L. C., Wearmouth, V. J., Wilson, R. P., Witt, M. J., & Metcalfe, J. D. (2008). Scaling laws of marine predator search behavior. Nature, 451, 1098.PubMed Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., James, A., Ahmed, M. Z., Brierley, A. S., Hindell, M. A., Morrit, D., Musyl, M. K., Righton, D., Shepard, E. L. C., Wearmouth, V. J., Wilson, R. P., Witt, M. J., & Metcalfe, J. D. (2008). Scaling laws of marine predator search behavior. Nature, 451, 1098.PubMed
go back to reference Soman, D. (2001). The mental accounting of sunk time costs: Why time is not like money. Journal of Behavioral Decision Making, 14(3), 169–185. Soman, D. (2001). The mental accounting of sunk time costs: Why time is not like money. Journal of Behavioral Decision Making, 14(3), 169–185.
go back to reference Stephens, D. W. (2008). Decision ecology: Foraging and the ecology of animal decision making. Cognitive, Affective & Behavioral Neuroscience, 8(4), 475–484. Stephens, D. W. (2008). Decision ecology: Foraging and the ecology of animal decision making. Cognitive, Affective & Behavioral Neuroscience, 8(4), 475–484.
go back to reference Stephens, D. W., & Charnov, E. (1982). Optimal foraging: Some simple stochastic models. Behavioral Ecology and Sociobiology, 10, 215–263. Stephens, D. W., & Charnov, E. (1982). Optimal foraging: Some simple stochastic models. Behavioral Ecology and Sociobiology, 10, 215–263.
go back to reference Stephens, D. W., Couzin, I., & Giraldeau, L. A. (2012). Ecological and behavioral approaches to search behavior. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: evolution, algorithms, and the brain (pp. 25–45). MIT Press. Stephens, D. W., Couzin, I., & Giraldeau, L. A. (2012). Ecological and behavioral approaches to search behavior. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: evolution, algorithms, and the brain (pp. 25–45). MIT Press.
go back to reference Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University Press. Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University Press.
go back to reference Tentelier, C., Lacroix, M. N., & Fauvergue, X. (2009). Inflexible wasps: The aphid parasitoid Lysiphlebus testaceipes does not track multiple changes in habitat profitability. Animal Behaviour, 77(1), 95–100. Tentelier, C., Lacroix, M. N., & Fauvergue, X. (2009). Inflexible wasps: The aphid parasitoid Lysiphlebus testaceipes does not track multiple changes in habitat profitability. Animal Behaviour, 77(1), 95–100.
go back to reference Thiel, A., & Hoffmeister, T. S. (2004). Knowing your habitat: Linking patch-encounter rate and patch exploitation rate in parasitoids. Behavioral Ecology, 15(3), 419–425. Thiel, A., & Hoffmeister, T. S. (2004). Knowing your habitat: Linking patch-encounter rate and patch exploitation rate in parasitoids. Behavioral Ecology, 15(3), 419–425.
go back to reference Thums, M., Bradshaw, C. J. A., & Hindell, M. A. (2011). In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology, 92(6), 1258–1270.PubMed Thums, M., Bradshaw, C. J. A., & Hindell, M. A. (2011). In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology, 92(6), 1258–1270.PubMed
go back to reference Thums, M., Bradshaw, C. J. A., Sumner, M. D., Horsburgh, J. M., & Hindell, M. A. (2012). Depletion of deep marine food patches forces divers to give up early. Journal of Animal Ecology, 82, 72–83. Thums, M., Bradshaw, C. J. A., Sumner, M. D., Horsburgh, J. M., & Hindell, M. A. (2012). Depletion of deep marine food patches forces divers to give up early. Journal of Animal Ecology, 82, 72–83.
go back to reference Toscano, B. J., Gownaris, N. J., Heerhartz, S. M., & Monaco, C. J. (2016). Personality, foraging behavior and specialization: Integrating behavioral and food web ecology at the individual level. Oecologia, 182(1), 55–69.PubMed Toscano, B. J., Gownaris, N. J., Heerhartz, S. M., & Monaco, C. J. (2016). Personality, foraging behavior and specialization: Integrating behavioral and food web ecology at the individual level. Oecologia, 182(1), 55–69.PubMed
go back to reference Turrin, C., Fagan, N. A., Dal Monte, O., & Chang, S. W. C. (2017). Social resources foraging is guided by the principles of marginal value theorem. Scientific Reports, 7, 1–13. Turrin, C., Fagan, N. A., Dal Monte, O., & Chang, S. W. C. (2017). Social resources foraging is guided by the principles of marginal value theorem. Scientific Reports, 7, 1–13.
go back to reference Valone, T. J. (2006). Are animals capable of Bayesian updating? An empirical review. Oikos, 112, 252–259. Valone, T. J. (2006). Are animals capable of Bayesian updating? An empirical review. Oikos, 112, 252–259.
go back to reference Van Gils, J. A. (2010). State-dependent Bayesian foraging on spatially autocorrelated food distributions. Oikos, 119, 237–244. Van Gils, J. A. (2010). State-dependent Bayesian foraging on spatially autocorrelated food distributions. Oikos, 119, 237–244.
go back to reference Viswanathan, G. M., Afanasiev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 381, 413–415. Viswanathan, G. M., Afanasiev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 381, 413–415.
go back to reference Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (1999). Optimizing the success of random searches. Nature, 401, 911–914.PubMed Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (1999). Optimizing the success of random searches. Nature, 401, 911–914.PubMed
go back to reference Viswanathan, G. M., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (2011). The physics of foraging. An introduction to random searches and biological encounters. University Press. Viswanathan, G. M., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (2011). The physics of foraging. An introduction to random searches and biological encounters. University Press.
go back to reference Viswanathan, G. M., Raposo, E. P., & da Luz, M. G. E. (2008). Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Reviews, 5, 133–150. Viswanathan, G. M., Raposo, E. P., & da Luz, M. G. E. (2008). Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Reviews, 5, 133–150.
go back to reference Volchenkov, D., Helbach, J., Tscherepanow, M., & Kühnel, S. (2013). Exploration-exploitation trade-off features a saltatory search behavior. Journal of the Royal Society Interface, 10, 20130352.PubMedCentral Volchenkov, D., Helbach, J., Tscherepanow, M., & Kühnel, S. (2013). Exploration-exploitation trade-off features a saltatory search behavior. Journal of the Royal Society Interface, 10, 20130352.PubMedCentral
go back to reference Von Helversen, B., Mata, R., Samanez-Larkin, G. R., & Wilke, A. (2018). Foraging, exploration or search? On the (lack of) convergent validity between three behavioral paradigms. Evolutionary Behavioral Sciences, 12(3), 152–162. Von Helversen, B., Mata, R., Samanez-Larkin, G. R., & Wilke, A. (2018). Foraging, exploration or search? On the (lack of) convergent validity between three behavioral paradigms. Evolutionary Behavioral Sciences, 12(3), 152–162.
go back to reference Wajnberg, E. (2012). Multi-objective behavioural mechanisms are adopted by foraging animals to achieve several optimality goals simultaneously. Journal of Animal Ecology, 81, 503–511. Wajnberg, E. (2012). Multi-objective behavioural mechanisms are adopted by foraging animals to achieve several optimality goals simultaneously. Journal of Animal Ecology, 81, 503–511.
go back to reference Weimerskirch, H., Pinaud, D., Pawlowski, F., & Bost, C. A. (2007). Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. The American Naturalist, 170(5), 734–743.PubMed Weimerskirch, H., Pinaud, D., Pawlowski, F., & Bost, C. A. (2007). Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. The American Naturalist, 170(5), 734–743.PubMed
go back to reference Weissburg, M. (1993). Sex and the single forager: Gender-specific energy maximization strategies in fiddler crabs. Ecology, 74(2), 279–291. Weissburg, M. (1993). Sex and the single forager: Gender-specific energy maximization strategies in fiddler crabs. Ecology, 74(2), 279–291.
go back to reference Wiegand, I., Seidel, C., & Wolfe, J. M. (2019). Hybrid foraging search in younger and older age. Psychology and aging, 34(6), 805–820.PubMedPubMedCentral Wiegand, I., Seidel, C., & Wolfe, J. M. (2019). Hybrid foraging search in younger and older age. Psychology and aging, 34(6), 805–820.PubMedPubMedCentral
go back to reference Wilke, A., Hutchinson, J. M. C., Todd, P. M., & Czienskowski, U. (2009). Fishing for the right words: Decision rules for human foraging behavior in internal search tasks. Cognitive Science, 33, 497–529.PubMed Wilke, A., Hutchinson, J. M. C., Todd, P. M., & Czienskowski, U. (2009). Fishing for the right words: Decision rules for human foraging behavior in internal search tasks. Cognitive Science, 33, 497–529.PubMed
go back to reference Wittman, M., & Paulus, M. P. (2008). Decision making, impulsivity, and time perception. Trends in Cognitive Sciences, 12(1), 7–12. Wittman, M., & Paulus, M. P. (2008). Decision making, impulsivity, and time perception. Trends in Cognitive Sciences, 12(1), 7–12.
go back to reference Wolfe, J. M. (2007). Guided search 4.0. Current progress with a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). University Press. Wolfe, J. M. (2007). Guided search 4.0. Current progress with a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). University Press.
go back to reference Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698–703.PubMed Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698–703.PubMed
go back to reference Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in human visual search. Journal of Vision, 13(3), 1–17. Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in human visual search. Journal of Vision, 13(3), 1–17.
go back to reference Wolfe, J. M. (2020). Guided Search 6.0: An upgrade with five forms of guidance, three types of functional visual fields, and two, distinct search templates. Journal of Vision, 20(11), 303. Wolfe, J. M. (2020). Guided Search 6.0: An upgrade with five forms of guidance, three types of functional visual fields, and two, distinct search templates. Journal of Vision, 20(11), 303.
go back to reference Wolfe, J. M., Aizenman, A. M., Boettcher, S. E. P., & Cain, M. S. (2016). Hybrid foraging search: Searching for multiple instances of multiple types of targets. Vision Research, 119, 50–59.PubMedPubMedCentral Wolfe, J. M., Aizenman, A. M., Boettcher, S. E. P., & Cain, M. S. (2016). Hybrid foraging search: Searching for multiple instances of multiple types of targets. Vision Research, 119, 50–59.PubMedPubMedCentral
go back to reference Wolfe, J. M., Cain, M. S., & Aizenman, A. M. (2019). Guidance and selection history in hybrid visual foraging search. Attention, Perception, & Psychophysics, 81(3), 637–653. Wolfe, J. M., Cain, M. S., & Aizenman, A. M. (2019). Guidance and selection history in hybrid visual foraging search. Attention, Perception, & Psychophysics, 81(3), 637–653.
go back to reference Wolfe, J. M., Cain, M. S., & Alaoui-Soce, A. (2018). Hybrid value foraging: How the value of targets shapes human foraging behavior. Attention, Perception, & Psychophysics, 80, 609–621. Wolfe, J. M., Cain, M. S., & Alaoui-Soce, A. (2018). Hybrid value foraging: How the value of targets shapes human foraging behavior. Attention, Perception, & Psychophysics, 80, 609–621.
go back to reference Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 1–8. Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 1–8.
go back to reference Woodman, G. F., & Chun, M. M. (2006). The role of working memory and long-term memory in visual search. Visual Cognition, 14(4–8), 808–830. Woodman, G. F., & Chun, M. M. (2006). The role of working memory and long-term memory in visual search. Visual Cognition, 14(4–8), 808–830.
go back to reference Wosniak, M. E., Raposo, E. P., Viswanathan, G. M., & Da Luz, M. G. E. (2015). Efficient search of multiple types of targets. Physical Review E, 92, 062135. Wosniak, M. E., Raposo, E. P., Viswanathan, G. M., & Da Luz, M. G. E. (2015). Efficient search of multiple types of targets. Physical Review E, 92, 062135.
go back to reference Wu, C. C., & Wolfe, J. M. (2019). Eye movements in medical image perception: A selective review of past, present and future. Vision, 3, 32.PubMedCentral Wu, C. C., & Wolfe, J. M. (2019). Eye movements in medical image perception: A selective review of past, present and future. Vision, 3, 32.PubMedCentral
go back to reference Zaburdaev, V., Denisov, S., & Klafter, J. (2015). Lévy walks. Reviews of Modern Physics, 87(2), 483–530. Zaburdaev, V., Denisov, S., & Klafter, J. (2015). Lévy walks. Reviews of Modern Physics, 87(2), 483–530.
go back to reference Zermatten, A., van der Linden, M., d’Acremont, M., Jermann, F., & Bechara, A. (2005). Impulsivity and decision making. Journal of Nervous and Mental Disease, 193(10), 647–650. Zermatten, A., van der Linden, M., d’Acremont, M., Jermann, F., & Bechara, A. (2005). Impulsivity and decision making. Journal of Nervous and Mental Disease, 193(10), 647–650.
go back to reference Zhang, J., Gong, X., Fougnie, D., & Wolfe, J. M. (2015). Using the past to anticipate the future in human foraging behavior. Vision Research, 111, 66–74.PubMedPubMedCentral Zhang, J., Gong, X., Fougnie, D., & Wolfe, J. M. (2015). Using the past to anticipate the future in human foraging behavior. Vision Research, 111, 66–74.PubMedPubMedCentral
go back to reference Zhao, K., Jurdak, R., Liu, J., Westcott, D., Kusy, B., Parry, H., Sommer, P., & McKeown, A. (2015). Optimal Lévy-flight foraging in a finite landscape. Journal of the Royal Society: Interface, 12, 1–12. Zhao, K., Jurdak, R., Liu, J., Westcott, D., Kusy, B., Parry, H., Sommer, P., & McKeown, A. (2015). Optimal Lévy-flight foraging in a finite landscape. Journal of the Royal Society: Interface, 12, 1–12.
go back to reference Zimmer, I., Wilson, R. P., Gilbert, C., Beaulieu, M., Ancel, A., & Ploetz, J. (2008). Foraging movements of emperor penguins at pointe geologie Antarctica. Polar Biology, 31(2), 229–243. Zimmer, I., Wilson, R. P., Gilbert, C., Beaulieu, M., Ancel, A., & Ploetz, J. (2008). Foraging movements of emperor penguins at pointe geologie Antarctica. Polar Biology, 31(2), 229–243.
Metagegevens
Titel
Foraging behavior in visual search: A review of theoretical and mathematical models in humans and animals
Auteurs
Marcos Bella-Fernández
Manuel Suero Suñé
Beatriz Gil-Gómez de Liaño
Publicatiedatum
21-03-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-021-01499-1

Andere artikelen Uitgave 2/2022

Psychological Research 2/2022 Naar de uitgave