Skip to main content
Top
Gepubliceerd in:

11-04-2021 | Original Article

Nonsymbolic and symbolic representations of null numerosity

Auteurs: Rut Zaks-Ohayon, Michal Pinhas, Joseph Tzelgov

Gepubliceerd in: Psychological Research | Uitgave 2/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Previous research has shown that null numerosity can be processed as a numerical entity that is represented together with non-null numerosities on the same magnitude system. The present study examined which conditions enable perceiving nonsymbolic (i.e., an empty set) and symbolic (i.e., 0) representations of null numerosity as a numerical entity, using distance and end effects. In Experiment 1, participants performed magnitude comparisons of notation homogeneous pairs (both numerosities appeared in nonsymbolic or symbolic format), as well as heterogeneous pairs (a nonsymbolic numerosity versus a symbolic one). Comparisons to 0 resulted in faster responses and an attenuated distance effect in all conditions, whereas comparisons to an empty set produced such effects only in the nonsymbolic and symbolic homogeneous conditions. In Experiments 2 and 3, participants performed same/different numerosity judgments with heterogeneous pairs. A distance effect emerged for "different" judgments of 0 and sets of 1 to 9 dots, but not for those with an empty set versus digits 1–9. These findings indicate that perceiving an empty set, but not 0, as a numerical entity is determined by notation homogeneity and task requirements.
Voetnoten
1
Furthermore, visual inspection of the data in the symbolic block (see Figure 2, left panel) suggests that the distance effect found for comparisons to empty sets may stem from a significant linear decrease primarily explained by the RT difference between an intrapair distance of 1 and all other intrapair distances, instead of reflecting a gradual linear decrease with the increase in the intrapair distance. An intrapair distance of 1 in comparisons to null numerosity corresponds to a comparison between two semantic end-values, that is, 0 and 1. Such a comparison may be conflicting, thus resulting in longer RTs (Pinhas et al., 2015; Pinhas & Tzelgov, 2012). To examine this impression statistically, we reanalyzed both comparisons to null numerosity and other comparisons in each of the homogeneous blocks excluding an intrapair distance of 1. In each of these four conditions, we examined the significance of the linear trend to evaluate the presence of a distance effect. Comparisons to null numerosity resulted in significant linear trends in both the symbolic block, F(1, 23) = 12.48, MSE = 88.21, p = .004, η2p = .27, and nonsymbolic block, F(1, 23) = 71.12, MSE = 61.88, p < .001, η2p = .82. Similarly, significant linear trends were obtained for other comparisons in the symbolic block, F(1, 23) = 8.17, MSE = 206, p < .001, η2p = .09) and nonsymbolic block, F(1, 23) = 54.46, MSE = 371, p < .001, η2p = .48.
 
2
The error rate analyses in the same/different tasks of both Experiments 2 and 3 indicated an increase in the error rates as a function of an increase in the presented numerosity for “same” responses. These findings reflect the inaccuracy of the estimation process in larger quantities. “Different” responses rarely resulted in errors and, thus, their analyses did not result in significant effects. Accordingly, the error rate analyses revealed no speed-accuracy trade-offs or significant effects. Therefore, for the sake of brevity, they were not reported.
 
Literatuur
go back to reference Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731–735.PubMed Bächtold, D., Baumüller, M., & Brugger, P. (1998). Stimulus-response compatibility in representational space. Neuropsychologia, 36(8), 731–735.PubMed
go back to reference Banks, W. P. (1977). Encoding and processing of symbolic information in comparative judgments. The Psychology of Learning and Motivation, 11, 101–159. Banks, W. P. (1977). Encoding and processing of symbolic information in comparative judgments. The Psychology of Learning and Motivation, 11, 101–159.
go back to reference Beran, M. J., Perdue, B. M., & Evans, T. A. (2015). Monkey mathematical abilities. The Oxford Handbook of Numerical Cognition (pp. 237–257). Oxford, UK: University Press. Beran, M. J., Perdue, B. M., & Evans, T. A. (2015). Monkey mathematical abilities. The Oxford Handbook of Numerical Cognition (pp. 237–257). Oxford, UK: University Press.
go back to reference Bialystok, E., & Codd, J. (2000). Representing quantity beyond whole numbers: Some, none, and part. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 54, 117–128.PubMed Bialystok, E., & Codd, J. (2000). Representing quantity beyond whole numbers: Some, none, and part. Canadian Journal of Experimental Psychology/Revue Canadienne De Psychologie Expérimentale, 54, 117–128.PubMed
go back to reference Biro, D., & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193–199.PubMed Biro, D., & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193–199.PubMed
go back to reference Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMed Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652.PubMed
go back to reference Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452. Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology: General, 124, 434–452.
go back to reference Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. (2001). Storage and retrieval of addition facts: The role of number comparison. The Quarterly Journal of Experimental Psychology: Section A, 54, 1005–1029. Butterworth, B., Zorzi, M., Girelli, L., & Jonckheere, A. (2001). Storage and retrieval of addition facts: The role of number comparison. The Quarterly Journal of Experimental Psychology: Section A, 54, 1005–1029.
go back to reference Campbell, J. I. (1994). Architectures for numerical cognition. Cognition, 53(1), 1–44.PubMed Campbell, J. I. (1994). Architectures for numerical cognition. Cognition, 53(1), 1–44.PubMed
go back to reference Campbell, J. I. D., & Metcalfe, A. W. S. (2007). Numeral format and arithmetic rules. European Journal of Cognitive Psychology, 19, 335–355. Campbell, J. I. D., & Metcalfe, A. W. S. (2007). Numeral format and arithmetic rules. European Journal of Cognitive Psychology, 19, 335–355.
go back to reference Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10, 408–411. Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10, 408–411.
go back to reference Clearfield, M. W., & Mix, K. S. (2001). Amount versus number: Infants’ use of area and contour length to discriminate small sets. Journal of Cognition and Development, 2, 243–260. Clearfield, M. W., & Mix, K. S. (2001). Amount versus number: Infants’ use of area and contour length to discriminate small sets. Journal of Cognition and Development, 2, 243–260.
go back to reference Cohen, D. J. (2009). Integers do not automatically activate their quantity representation. Psychonomic Bulletin & Review, 16, 332–336. Cohen, D. J. (2009). Integers do not automatically activate their quantity representation. Psychonomic Bulletin & Review, 16, 332–336.
go back to reference Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.PubMed Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361.PubMed
go back to reference Cohen Kadosh, R., Brodsky, W., Levin, M., & Henik, A. (2008). Mental representation: What can pitch tell us about the distance effect? Cortex, 44, 470–477.PubMed Cohen Kadosh, R., Brodsky, W., Levin, M., & Henik, A. (2008). Mental representation: What can pitch tell us about the distance effect? Cortex, 44, 470–477.PubMed
go back to reference Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 313–328.PubMed Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: Abstract or not abstract? Behavioral and Brain Sciences, 32, 313–328.PubMed
go back to reference Cooper Jr, R. G. (1984). Early number development. In Origins of cognitive skills: The eighteenth annual Carnegie symposium on cognition (pp. 157–192). Erlbaum.‏ Cooper Jr, R. G. (1984). Early number development. In Origins of cognitive skills: The eighteenth annual Carnegie symposium on cognition (pp. 157–192). Erlbaum.‏
go back to reference Defever, E., Sasanguie, D., Vandewaetere, M., & Reynvoet, B. (2012). What can the same–different task tell us about the development of magnitude representations? Acta Psychologica, 140, 35–42.PubMed Defever, E., Sasanguie, D., Vandewaetere, M., & Reynvoet, B. (2012). What can the same–different task tell us about the development of magnitude representations? Acta Psychologica, 140, 35–42.PubMed
go back to reference Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.PubMed Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.PubMed
go back to reference Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7, 145–147.PubMed Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7, 145–147.PubMed
go back to reference Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 314–326.PubMed Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 314–326.PubMed
go back to reference Dehaene, S., & Changeux, J. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390–407.PubMed Dehaene, S., & Changeux, J. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390–407.PubMed
go back to reference Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120. Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.
go back to reference Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.PubMed Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.PubMed
go back to reference Entel, O., Tzelgov, J., Bereby-Meyer, Y., & Shahar, N. (2015). Exploring relations between task conflict and informational conflict in the Stroop task. Psychological Research Psychologische Forschung, 79, 913–927.PubMed Entel, O., Tzelgov, J., Bereby-Meyer, Y., & Shahar, N. (2015). Exploring relations between task conflict and informational conflict in the Stroop task. Psychological Research Psychologische Forschung, 79, 913–927.PubMed
go back to reference Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.PubMed Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.PubMed
go back to reference Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research Psychologische Forschung, 65, 250–259.PubMed Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research Psychologische Forschung, 65, 250–259.PubMed
go back to reference Fias, W., Lammertyn, J., Caessens, B., & Orban, G. A. (2007). Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. Journal of Neuroscience, 27, 8952–8956.PubMed Fias, W., Lammertyn, J., Caessens, B., & Orban, G. A. (2007). Processing of abstract ordinal knowledge in the horizontal segment of the intraparietal sulcus. Journal of Neuroscience, 27, 8952–8956.PubMed
go back to reference Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72(3), 333–336.PubMed Fischer, M. H., Mills, R. A., & Shaki, S. (2010). How to cook a SNARC: Number placement in text rapidly changes spatial-numerical associations. Brain and Cognition, 72(3), 333–336.PubMed
go back to reference Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56(5), 361–366.PubMed Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Experimental Psychology, 56(5), 361–366.PubMed
go back to reference Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.PubMed Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74.PubMed
go back to reference Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.PubMed Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.PubMed
go back to reference Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986.PubMed Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43, 981–986.PubMed
go back to reference Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642648-. Gebuis, T., & Reynvoet, B. (2012). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642648-.
go back to reference Godwin, H. J., Hout, M. C., & Menneer, T. (2014). Visual similarity is stronger than semantic similarity in guiding visual search for numbers. Psychonomic Bulletin & Review, 21, 689–695. Godwin, H. J., Hout, M. C., & Menneer, T. (2014). Visual similarity is stronger than semantic similarity in guiding visual search for numbers. Psychonomic Bulletin & Review, 21, 689–695.
go back to reference Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343. Groen, G. J., & Parkman, J. M. (1972). A chronometric analysis of simple addition. Psychological Review, 79(4), 329–343.
go back to reference Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360, 1124–1126.PubMed Howard, S. R., Avarguès-Weber, A., Garcia, J. E., Greentree, A. D., & Dyer, A. G. (2018). Numerical ordering of zero in honey bees. Science, 360, 1124–1126.PubMed
go back to reference Jeffreys, H. (1961). Theory of probability . Oxford University Press. Jeffreys, H. (1961). Theory of probability . Oxford University Press.
go back to reference Kaufmann, L., Vogel, S. E., Starke, M., Kremser, C., & Schocke, M. (2009). Numerical and non-numerical ordinality processing in children with and without developmental dyscalculia: Evidence from fMRI. Cognitive Development, 24, 486–494. Kaufmann, L., Vogel, S. E., Starke, M., Kremser, C., & Schocke, M. (2009). Numerical and non-numerical ordinality processing in children with and without developmental dyscalculia: Evidence from fMRI. Cognitive Development, 24, 486–494.
go back to reference Keppel, G. (1991). Design and analysis: A researcher's handbook Prentice-Hall, Inc. Keppel, G. (1991). Design and analysis: A researcher's handbook Prentice-Hall, Inc.
go back to reference Leibovich, T., & Ansari, D. (2017). Accumulation of non-numerical evidence during nonsymbolic number processing in the brain: An fmri study. Human Brain Mapping, 38, 4908–4921.PubMedPubMedCentral Leibovich, T., & Ansari, D. (2017). Accumulation of non-numerical evidence during nonsymbolic number processing in the brain: An fmri study. Human Brain Mapping, 38, 4908–4921.PubMedPubMedCentral
go back to reference Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.PubMed Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, e164.PubMed
go back to reference Leth-Steensen, C., & Marley, A. (2000). A model of response time effects in symbolic comparison. Psychological Review, 107, 62–100.PubMed Leth-Steensen, C., & Marley, A. (2000). A model of response time effects in symbolic comparison. Psychological Review, 107, 62–100.PubMed
go back to reference Levin, Y., & Tzelgov, J. (2016). What Klein’s “semantic gradient” does and does not really show: Decomposing Stroop interference into task and informational conflict components. Frontiers in Psychology, 7, 249.PubMedPubMedCentral Levin, Y., & Tzelgov, J. (2016). What Klein’s “semantic gradient” does and does not really show: Decomposing Stroop interference into task and informational conflict components. Frontiers in Psychology, 7, 249.PubMedPubMedCentral
go back to reference Liszkowski, U., Schäfer, M., Carpenter, M., & Tomasello, M. (2009). Prelinguistic infants, but not chimpanzees, communicate about absent entities. Psychological Science, 20, 654–660.PubMed Liszkowski, U., Schäfer, M., Carpenter, M., & Tomasello, M. (2009). Prelinguistic infants, but not chimpanzees, communicate about absent entities. Psychological Science, 20, 654–660.PubMed
go back to reference Maxwell, S. E., Delaney, H. D., & Kelley, K. (2017). Designing experiments and analyzing data: A model comparison perspective (3rd ed.). Routledge. Maxwell, S. E., Delaney, H. D., & Kelley, K. (2017). Designing experiments and analyzing data: A model comparison perspective (3rd ed.). Routledge.
go back to reference Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.PubMed Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320–334.PubMed
go back to reference Merritt, D. J., & Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept in preschoolers. Behavioural Processes, 93, 91–97.PubMed Merritt, D. J., & Brannon, E. M. (2013). Nothing to it: Precursors to a zero concept in preschoolers. Behavioural Processes, 93, 91–97.PubMed
go back to reference Merritt, D. J., Rugani, R., & Brannon, E. M. (2009). Empty sets as part of the numerical continuum: Conceptual precursors to the zero concept in rhesus monkeys. Journal of Experimental Psychology: General, 138, 258–269. Merritt, D. J., Rugani, R., & Brannon, E. M. (2009). Empty sets as part of the numerical continuum: Conceptual precursors to the zero concept in rhesus monkeys. Journal of Experimental Psychology: General, 138, 258–269.
go back to reference Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.PubMed Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.PubMed
go back to reference Nieder, A. (2018). Honey bees zero in on the empty set. Science, 360, 1069–1070.PubMed Nieder, A. (2018). Honey bees zero in on the empty set. Science, 360, 1069–1070.PubMed
go back to reference Notebaert, W., Gevers, W., Verguts, T., & Fias, W. (2006). Shared spatial representations for numbers and space: The reversal of the SNARC and the Simon effects. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1197.PubMed Notebaert, W., Gevers, W., Verguts, T., & Fias, W. (2006). Shared spatial representations for numbers and space: The reversal of the SNARC and the Simon effects. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1197.PubMed
go back to reference Nuerk, H., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology Section A, 57, 835–863. Nuerk, H., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology Section A, 57, 835–863.
go back to reference Okuyama, S., Kuki, T., & Mushiake, H. (2015). Representation of the numerosity ‘zero’ in the parietal cortex of the monkey. Scientific Reports, 5, 10059.PubMedPubMedCentral Okuyama, S., Kuki, T., & Mushiake, H. (2015). Representation of the numerosity ‘zero’ in the parietal cortex of the monkey. Scientific Reports, 5, 10059.PubMedPubMedCentral
go back to reference Pepperberg, I. M. (2006). Grey parrot numerical competence: A review. Animal Cognition, 9, 377–391.PubMed Pepperberg, I. M. (2006). Grey parrot numerical competence: A review. Animal Cognition, 9, 377–391.PubMed
go back to reference Pepperberg, I. M., & Gordon, J. D. (2005). Number comprehension by a grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197–209.PubMed Pepperberg, I. M., & Gordon, J. D. (2005). Number comprehension by a grey parrot (Psittacus erithacus), including a zero-like concept. Journal of Comparative Psychology, 119, 197–209.PubMed
go back to reference Pinhas, M., Buchman, C., Lavro, D., Mesika, D., Tzelgov, J., & Berger, A. (2015). The neural signatures of processing semantic end values in automatic number comparisons. Frontiers in Human Neuroscience, 9, 645.PubMedPubMedCentral Pinhas, M., Buchman, C., Lavro, D., Mesika, D., Tzelgov, J., & Berger, A. (2015). The neural signatures of processing semantic end values in automatic number comparisons. Frontiers in Human Neuroscience, 9, 645.PubMedPubMedCentral
go back to reference Pinhas, M., Pothos, E. M., & Tzelgov, J. (2013). Zooming in and out from the mental number line: Evidence for a number range effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 972.PubMed Pinhas, M., Pothos, E. M., & Tzelgov, J. (2013). Zooming in and out from the mental number line: Evidence for a number range effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(3), 972.PubMed
go back to reference Pinhas, M., & Tzelgov, J. (2012). Expanding on the mental number line: Zero is perceived as the “smallest.” Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1187–1205.PubMed Pinhas, M., & Tzelgov, J. (2012). Expanding on the mental number line: Zero is perceived as the “smallest.” Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1187–1205.PubMed
go back to reference Pinhas, M., Tzelgov, J., & Ganor-Stern, D. (2012). Estimating linear effects in ANOVA designs: The easy way. Behavior Research Methods, 44(3), 788–794.PubMed Pinhas, M., Tzelgov, J., & Ganor-Stern, D. (2012). Estimating linear effects in ANOVA designs: The easy way. Behavior Research Methods, 44(3), 788–794.PubMed
go back to reference Pinhas, M., Tzelgov, J., & Guata-Yaakobi, I. (2010). Exploring the mental number line via the size congruity effect. Canadian Journal of Experimental Psychology, 64(3), 221–225.PubMed Pinhas, M., Tzelgov, J., & Guata-Yaakobi, I. (2010). Exploring the mental number line via the size congruity effect. Canadian Journal of Experimental Psychology, 64(3), 221–225.PubMed
go back to reference Ramirez-Cardenas, A., Moskaleva, M., & Nieder, A. (2016). Neuronal representation of numerosity zero in the primate parieto-frontal number network. Current Biology, 26, 1285–1294.PubMed Ramirez-Cardenas, A., Moskaleva, M., & Nieder, A. (2016). Neuronal representation of numerosity zero in the primate parieto-frontal number network. Current Biology, 26, 1285–1294.PubMed
go back to reference Ratinckx, E., Brysbaert, M., & Fias, W. (2005). Naming two-digit Arabic numerals: Evidence from masked priming studies. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 1150.PubMed Ratinckx, E., Brysbaert, M., & Fias, W. (2005). Naming two-digit Arabic numerals: Evidence from masked priming studies. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 1150.PubMed
go back to reference Robson, D. S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics, 15, 187–191. Robson, D. S. (1959). A simple method for constructing orthogonal polynomials when the independent variable is unequally spaced. Biometrics, 15, 187–191.
go back to reference Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic bulletin & review, 16(2), 225–237. Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic bulletin & review, 16(2), 225–237.
go back to reference Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's guide. Psychology Software Incorporated.‏ Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's guide. Psychology Software Incorporated.‏
go back to reference Semenza, C., Grana, A., & Girelli, L. (2006). On knowing about nothing: The processing of zero in single-and multi-digit multiplication. Aphasiology, 20, 1105–1111. Semenza, C., Grana, A., & Girelli, L. (2006). On knowing about nothing: The processing of zero in single-and multi-digit multiplication. Aphasiology, 20, 1105–1111.
go back to reference Shaki, S., & Fischer, M. H. (2008). Reading space into numbers–a cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590–599.PubMed Shaki, S., & Fischer, M. H. (2008). Reading space into numbers–a cross-linguistic comparison of the SNARC effect. Cognition, 108(2), 590–599.PubMed
go back to reference Tzelgov, J., & Ganor-Stern, D. (2005). Automaticity in processing ordinal information. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 55–67). Psychology Press. Tzelgov, J., & Ganor-Stern, D. (2005). Automaticity in processing ordinal information. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 55–67). Psychology Press.
go back to reference Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin & Review, 15, 419–425. Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin & Review, 15, 419–425.
go back to reference Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: The same–different task. Journal of Cognitive Psychology, 23, 112–120. Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: The same–different task. Journal of Cognitive Psychology, 23, 112–120.
go back to reference Van Opstal, F., & Verguts, T. (2013). Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology, 4, 435.PubMedPubMedCentral Van Opstal, F., & Verguts, T. (2013). Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Frontiers in Psychology, 4, 435.PubMedPubMedCentral
go back to reference Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: An abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385.PubMed Varma, S., & Schwartz, D. L. (2011). The mental representation of integers: An abstract-to-concrete shift in the understanding of mathematical concepts. Cognition, 121, 363–385.PubMed
go back to reference Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.PubMed Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: A neural model. Journal of Cognitive Neuroscience, 16, 1493–1504.PubMed
go back to reference Verguts, T., & Fias, W. (2008). Symbolic and nonsymbolic pathways of number processing. Philosophical Psychology, 21, 539–554. Verguts, T., & Fias, W. (2008). Symbolic and nonsymbolic pathways of number processing. Philosophical Psychology, 21, 539–554.
go back to reference Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin & Review, 12, 66–80. Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic Bulletin & Review, 12, 66–80.
go back to reference Wellman, H. M., & Miller, K. F. (1986). Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology, 4, 31–42. Wellman, H. M., & Miller, K. F. (1986). Thinking about nothing: Development of concepts of zero. British Journal of Developmental Psychology, 4, 31–42.
go back to reference Wynn, K., & Chiang, W. (1998). Limits to infants’ knowledge of objects: The case of magical appearance. Psychological Science, 9, 448–455. Wynn, K., & Chiang, W. (1998). Limits to infants’ knowledge of objects: The case of magical appearance. Psychological Science, 9, 448–455.
go back to reference Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1–B11.PubMed Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1–B11.PubMed
Metagegevens
Titel
Nonsymbolic and symbolic representations of null numerosity
Auteurs
Rut Zaks-Ohayon
Michal Pinhas
Joseph Tzelgov
Publicatiedatum
11-04-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 2/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-021-01515-4

Andere artikelen Uitgave 2/2022

Psychological Research 2/2022 Naar de uitgave