Skip to main content
Top
Gepubliceerd in: Psychological Research 2/2009

01-03-2009 | Original Article

Salience detection and attentional capture

Auteur: Anna Schubö

Gepubliceerd in: Psychological Research | Uitgave 2/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

There is an ongoing debate to what extent irrelevant salient information attracts an observer’s attention and is processed without the observer intending to do so. The present experiment investigated attentional capture of salient but irrelevant objects and compared target processing in target-and-distractor to target-only trials. Both form and color singletons were used and their target–distractor assignment was interchanged. Thus the general impact of the presence of a salient distractor on target processing could be separated from the impact of the specific target–distractor salience relation. Response latencies and event-related brain potentials (ERPs) were registered. Results showed a strong influence of the mere presence of an irrelevant distractor on target processing: both the visual N1 and the posterior N2 showed better attention focusing in target-only trials compared to target-and-distractor trials. Response times and N2pc results, on the other hand, showed evidence in favor of salience-specific attention allocation. N2pc results indicated that the distractor affected the allocation of attention in trials with form targets and color distractors but not in the opposite condition. Taken together, results showed a general impact of irrelevant salient singletons on search behavior when they were presented simultaneously with relevant singletons. The allocation of focal attention (as mirrored by the N2pc), however, was also influenced by the specific target–distractor salience relation.
Voetnoten
1
As pointed out by an anonymous reviewer, it is important to state that the term “salience” may be used in two different ways. Salience may be used to indicate priority in the salience hierarchy, i.e., to denote that an object has priority in the hierarchy of potentially interesting objects or locations. This type of salience may result from the combination of bottom-up feature contrast signal computations with top-down weighting of task-relevant features or dimensions. Second, the term salience may be used to describe the physical distinctiveness of an item or object from other, neighbouring items or objects in the visual field. In this second connotation, salience denotes the result of a pure bottom-up feature contrast computation.
 
2
The author would like to thank Jeremy Wolfe for suggesting this RT analysis.
 
Literatuur
go back to reference Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496. Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Perception & Psychophysics, 55, 485–496.
go back to reference Cave, K. R. (1999). The FeatureGate model of visual selection. Psychological Research, 62, 182–194.PubMedCrossRef Cave, K. R. (1999). The FeatureGate model of visual selection. Psychological Research, 62, 182–194.PubMedCrossRef
go back to reference Eimer, M. (1994). “Sensory gating” as a mechanism for visuospatial orienting: electrophysiological evidence from trial-by-trial cuing experiments. Perception & Psychophysics, 55, 667–675. Eimer, M. (1994). “Sensory gating” as a mechanism for visuospatial orienting: electrophysiological evidence from trial-by-trial cuing experiments. Perception & Psychophysics, 55, 667–675.
go back to reference Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.PubMedCrossRef Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225–234.PubMedCrossRef
go back to reference Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64, 741–753. Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64, 741–753.
go back to reference Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 24, 847–858.CrossRef Folk, C. L., & Remington, R. W. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception & Performance, 24, 847–858.CrossRef
go back to reference Folk, C. L., & Remington, R. W. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445–465.CrossRef Folk, C. L., & Remington, R. W. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14, 445–465.CrossRef
go back to reference Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18, 1030–1044.CrossRef Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18, 1030–1044.CrossRef
go back to reference Geyer, T., Müller, H. J., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48, 1315–1326. Geyer, T., Müller, H. J., & Krummenacher, J. (2008). Expectancies modulate attentional capture by salient color singletons. Vision Research, 48, 1315–1326.
go back to reference Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. Evidence for early selection. Electroencephalography and Clinical Neurophysiology, 75, 511–527.PubMedCrossRef Heinze, H. J., Luck, S. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. Evidence for early selection. Electroencephalography and Clinical Neurophysiology, 75, 511–527.PubMedCrossRef
go back to reference Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18, 604–613.PubMedCrossRef Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18, 604–613.PubMedCrossRef
go back to reference Hopf, J. M., Boelmans, K., Schoenfeld, M. A., Luck, S. J., & Heinze, H. J. (2004). Attention to features precedes attention to locations in visual search: evidence from electromagnetic brain responses in humans. The Journal of Neuroscience, 24, 1822–1832.PubMedCrossRef Hopf, J. M., Boelmans, K., Schoenfeld, M. A., Luck, S. J., & Heinze, H. J. (2004). Attention to features precedes attention to locations in visual search: evidence from electromagnetic brain responses in humans. The Journal of Neuroscience, 24, 1822–1832.PubMedCrossRef
go back to reference Hopf, J. M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., et al. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241.PubMedCrossRef Hopf, J. M., Luck, S. J., Girelli, M., Hagner, T., Mangun, G. R., Scheich, H., et al. (2000). Neural sources of focused attention in visual search. Cerebral Cortex, 10, 1233–1241.PubMedCrossRef
go back to reference Kim, M. S., & Cave, K. R. (1999). Top-down and bottom-up attentional control: On the nature of interference from a salient distractor. Perception & Psychophysics, 61, 1009–1023. Kim, M. S., & Cave, K. R. (1999). Top-down and bottom-up attentional control: On the nature of interference from a salient distractor. Perception & Psychophysics, 61, 1009–1023.
go back to reference Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search modes. Journal of Experimental Psychology: Human Perception and Performance, 29, 1003–1020.PubMedCrossRef Lamy, D., & Egeth, H. E. (2003). Attentional capture in singleton-detection and feature-search modes. Journal of Experimental Psychology: Human Perception and Performance, 29, 1003–1020.PubMedCrossRef
go back to reference Leblanc, E., & Jolicoeur, P. (2005). The time course of contingent spatial blink. Canadian Journal of Experimental Psychology, 59, 124–131.PubMed Leblanc, E., & Jolicoeur, P. (2005). The time course of contingent spatial blink. Canadian Journal of Experimental Psychology, 59, 124–131.PubMed
go back to reference Leblanc, E., Prime, D. J., & Jolicoeur, P. (2008). Tracking the location of visuospatial attention in a contingent capture paradigm. Journal of Cognitive Neuroscience, 20, 657–671.PubMedCrossRef Leblanc, E., Prime, D. J., & Jolicoeur, P. (2008). Tracking the location of visuospatial attention in a contingent capture paradigm. Journal of Cognitive Neuroscience, 20, 657–671.PubMedCrossRef
go back to reference Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64–87.PubMedCrossRef Luck, S. J., Girelli, M., McDermott, M. T., & Ford, M. A. (1997). Bridging the gap between monkey neurophysiology and human perception: An ambiguity resolution theory of visual selective attention. Cognitive Psychology, 33, 64–87.PubMedCrossRef
go back to reference Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308.PubMedCrossRef Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291–308.PubMedCrossRef
go back to reference Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception & Performance, 20, 1000–1014.CrossRef Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception & Performance, 20, 1000–1014.CrossRef
go back to reference Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32, 4–18.PubMedCrossRef Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32, 4–18.PubMedCrossRef
go back to reference Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2008). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception & Performance. Müller, H. J., Geyer, T., Zehetleitner, M., & Krummenacher, J. (2008). Attentional capture by salient color singleton distractors is modulated by top-down dimensional set. Journal of Experimental Psychology: Human Perception & Performance.
go back to reference Ritter, W., Simson, R., & Vaughan, H. G. (1983). Event-related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology, 20, 168–179.PubMedCrossRef Ritter, W., Simson, R., & Vaughan, H. G. (1983). Event-related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology, 20, 168–179.PubMedCrossRef
go back to reference Schubö, A., Schröger, E., & Meinecke, C. (2004). Texture segmentation and visual search for pop-out targets: an ERP study. Cognitive Brain Research, 21, 317–334.PubMedCrossRef Schubö, A., Schröger, E., & Meinecke, C. (2004). Texture segmentation and visual search for pop-out targets: an ERP study. Cognitive Brain Research, 21, 317–334.PubMedCrossRef
go back to reference Schubö, A., Schröger, E., Meinecke, C., & Müller, H. J. (2007a). Attentional resources and pop-out detection in search displays. NeuroReport, 18, 1589–1593.PubMedCrossRef Schubö, A., Schröger, E., Meinecke, C., & Müller, H. J. (2007a). Attentional resources and pop-out detection in search displays. NeuroReport, 18, 1589–1593.PubMedCrossRef
go back to reference Schubö, A., Wykowska, A., & Müller, H. J. (2007b). Detecting pop-out targets in contexts of varying homogeneity: Investigating homogeneity coding with event-related brain potentials. Brain Research, 1138, 136–147.PubMedCrossRef Schubö, A., Wykowska, A., & Müller, H. J. (2007b). Detecting pop-out targets in contexts of varying homogeneity: Investigating homogeneity coding with event-related brain potentials. Brain Research, 1138, 136–147.PubMedCrossRef
go back to reference Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50, 184–193. Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Perception & Psychophysics, 50, 184–193.
go back to reference Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51, 599–606.
go back to reference Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception & Performance, 20, 799–806.CrossRef Theeuwes, J. (1994). Stimulus-driven capture and attentional set: Selective search for color and visual abrupt onsets. Journal of Experimental Psychology: Human Perception & Performance, 20, 799–806.CrossRef
go back to reference Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11, 65–70. Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11, 65–70.
go back to reference Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Attention & Performance (Vol. 18, pp. 105–125). Cambridge: MIT Press. Theeuwes, J., Atchley, P., & Kramer, A. F. (2000). On the time course of top-down and bottom-up control of visual attention. In S. Monsell & J. Driver (Eds.), Attention & Performance (Vol. 18, pp. 105–125). Cambridge: MIT Press.
go back to reference Treisman, A. (1988). Features and objects: The Fourteenth Bartlett Memorial Lecture. The Quarterly Journal of Experimental Psychology, 40A, 201–237. Treisman, A. (1988). Features and objects: The Fourteenth Bartlett Memorial Lecture. The Quarterly Journal of Experimental Psychology, 40A, 201–237.
go back to reference Van Zoest, W., & Donk, M. (2004). Bottom-up and top-down control in visual search. Perception, 33, 927–937.PubMedCrossRef Van Zoest, W., & Donk, M. (2004). Bottom-up and top-down control in visual search. Perception, 33, 927–937.PubMedCrossRef
go back to reference Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37, 190–203.PubMedCrossRef Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37, 190–203.PubMedCrossRef
go back to reference Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238. Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin and Review, 1, 202–238.
go back to reference Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869.PubMedCrossRef Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867–869.PubMedCrossRef
go back to reference Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception & Performance, 29, 121–138.CrossRef Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception & Performance, 29, 121–138.CrossRef
Metagegevens
Titel
Salience detection and attentional capture
Auteur
Anna Schubö
Publicatiedatum
01-03-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 2/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-008-0215-x

Andere artikelen Uitgave 2/2009

Psychological Research 2/2009 Naar de uitgave