Skip to main content
Top

2023 | OriginalPaper | Hoofdstuk

10. Radiobiologie in de radiotherapie

Auteur : Dr. P. Sminia

Gepubliceerd in: Stralingsdeskundigheid in de praktijk

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

In de klinische behandeling van kankerpatiënten met ioniserende straling moet een optimale balans worden gevonden tussen de potentiële voordelen – genezing van de patiënt – en de mogelijke nadelen – bijwerkingen. Uiteindelijk bepalen de biologische processen die optreden na blootstelling van zowel tumoren als gezonde weefsels en organen de ruimte voor optimale behandeling, de therapeutische breedte. De zes R’s van de radiobiologie (radiosensitiviteit, reparatie, redistributie, reoxygenatie, repopulatie en reactivatie van het immuunsysteem) zijn de typische fenomenen die daarin een cruciale rol spelen. Het tumortype en zowel de vroege als de late effecten op de gezonde weefsels zijn medebepalend voor de keuze van de bestralingsmethode, het fractioneringsschema en het dosistempo. Met het lineair-kwadratisch model kunnen biologisch iso-effectieve fractioneringsschema’s worden uitgerekend. Een belangrijke parameter in het model is de α/β-ratio, een maat voor de gevoeligheid van het bestraalde weefsel voor fractioneren van de totale dosis. Fractionering spaart vooral laat reagerende gezonde weefsels.
Literatuur
1.
go back to reference Withers HR. The four R’s of radiotherapy. Adv Radiation Biol. 1975;5:241–71.CrossRef Withers HR. The four R’s of radiotherapy. Adv Radiation Biol. 1975;5:241–71.CrossRef
2.
go back to reference Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiation Bio. 1989;56(6):1045–8.CrossRef Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiation Bio. 1989;56(6):1045–8.CrossRef
3.
4.
go back to reference Daguenet E, Khalifa J, Tolédano A, Borchiellini D, Pointreau Y, Rodriguez-Lafrasse C, et al. To exploit the 5 ‘R’ of radiobiology and unleash the 3 ‘E’ of immunoediting: ‘RE’-inventing the radiotherapy-immunotherapy combination. Ther Adv Med Oncol. 2020;12:1758835920913445.CrossRefPubMedPubMedCentral Daguenet E, Khalifa J, Tolédano A, Borchiellini D, Pointreau Y, Rodriguez-Lafrasse C, et al. To exploit the 5 ‘R’ of radiobiology and unleash the 3 ‘E’ of immunoediting: ‘RE’-inventing the radiotherapy-immunotherapy combination. Ther Adv Med Oncol. 2020;12:1758835920913445.CrossRefPubMedPubMedCentral
6.
7.
go back to reference Harrington K, Jankowska P, Hingorani M. Molecular biology for the radiation oncologist: the 5Rs of radiobiology meet the hallmarks of cancer. Clin Oncol (R Coll Radiol). 2007;19(8):561–71.CrossRefPubMed Harrington K, Jankowska P, Hingorani M. Molecular biology for the radiation oncologist: the 5Rs of radiobiology meet the hallmarks of cancer. Clin Oncol (R Coll Radiol). 2007;19(8):561–71.CrossRefPubMed
8.
go back to reference Bristow RG, Alexander B, Baumann M, Bratman SV, Brown JM, Camphausen K, et al. Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol. 2018;19(5):e240–51.CrossRefPubMed Bristow RG, Alexander B, Baumann M, Bratman SV, Brown JM, Camphausen K, et al. Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol. 2018;19(5):e240–51.CrossRefPubMed
9.
go back to reference Higgins GS, O’Cathail SM, Muschel RJ, McKenna WG. Drug radiotherapy combinations: review of previous failures and reasons for future optimism. Cancer Treat Rev. 2015;41(2):105–13.CrossRefPubMed Higgins GS, O’Cathail SM, Muschel RJ, McKenna WG. Drug radiotherapy combinations: review of previous failures and reasons for future optimism. Cancer Treat Rev. 2015;41(2):105–13.CrossRefPubMed
10.
go back to reference Hall EJ, Giaccia AJ, editors. Radiobiology for the radiologist. 8th ed. Philadelphia, PA: Wolters Kluwer; 2018. Hall EJ, Giaccia AJ, editors. Radiobiology for the radiologist. 8th ed. Philadelphia, PA: Wolters Kluwer; 2018.
11.
go back to reference Shrieve DC, Loeffler JS, editors. Human radiation Injury. 1st ed. Philadelphia: Lipincott, Williams and Wilkins; 2011. Shrieve DC, Loeffler JS, editors. Human radiation Injury. 1st ed. Philadelphia: Lipincott, Williams and Wilkins; 2011.
12.
go back to reference Withers HR, Thames HD Jr, Peters LJ. Biological bases for high RBE values for late effects of neutron irradiation. Int J Radiat Oncol Biol Phys. 1982;8(12):2071–6.CrossRefPubMed Withers HR, Thames HD Jr, Peters LJ. Biological bases for high RBE values for late effects of neutron irradiation. Int J Radiat Oncol Biol Phys. 1982;8(12):2071–6.CrossRefPubMed
13.
go back to reference Joiner MC, Van der Kogel AJ, editors. Basic clinical radiobiology. 5th ed. Boca Raton: CRC Press; 2018. Joiner MC, Van der Kogel AJ, editors. Basic clinical radiobiology. 5th ed. Boca Raton: CRC Press; 2018.
14.
go back to reference Marcu LG. Altered fractionation in radiotherapy: from radiobiological rationale to therapeutic gain. Cancer Treat Rev. 2010;36(8):606–14.CrossRefPubMed Marcu LG. Altered fractionation in radiotherapy: from radiobiological rationale to therapeutic gain. Cancer Treat Rev. 2010;36(8):606–14.CrossRefPubMed
15.
go back to reference Van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, et al. The alpha and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018 May 16;13(1):96.CrossRefPubMedPubMedCentral Van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, et al. The alpha and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018 May 16;13(1):96.CrossRefPubMedPubMedCentral
16.
go back to reference Brown JM, Brenner DJ, Carlson DJ. Dose escalation, not ‘new biology’, can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013 Apr 1;85(5):1159–60.CrossRefPubMedPubMedCentral Brown JM, Brenner DJ, Carlson DJ. Dose escalation, not ‘new biology’, can account for the efficacy of stereotactic body radiation therapy with non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2013 Apr 1;85(5):1159–60.CrossRefPubMedPubMedCentral
17.
go back to reference Shibamoto Y, Miyakawa A, Otsuka S, Iwata H. Radiobiology of hypofractionated stereotactic radiotherapy: what are the optimal fractionation schedules? J Radiat Res. 2016 Aug;57 Suppl 1(Suppl 1):i76–i82. Shibamoto Y, Miyakawa A, Otsuka S, Iwata H. Radiobiology of hypofractionated stereotactic radiotherapy: what are the optimal fractionation schedules? J Radiat Res. 2016 Aug;57 Suppl 1(Suppl 1):i76–i82.
18.
go back to reference Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27.CrossRefPubMed Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311–27.CrossRefPubMed
19.
go back to reference Fowler J, King CR. Don’t squeeze hypofractionated schedules into too-short overall times. Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):323–5.CrossRefPubMed Fowler J, King CR. Don’t squeeze hypofractionated schedules into too-short overall times. Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):323–5.CrossRefPubMed
20.
go back to reference Shuryak I, Hall EJ, Brenner DJ. Dose dependence of accelerated repopulation in head and neck cancer: Supporting evidence and clinical implications. Radiother Oncol. 2018;127(1):20–6.CrossRefPubMed Shuryak I, Hall EJ, Brenner DJ. Dose dependence of accelerated repopulation in head and neck cancer: Supporting evidence and clinical implications. Radiother Oncol. 2018;127(1):20–6.CrossRefPubMed
21.
go back to reference Formenti SC. Optimizing dose per fraction: a new chapter in the story of the abscopal effect? Int J Radiat Oncol Biol Phys. 2017 Nov 1;99(3):677–9.CrossRefPubMed Formenti SC. Optimizing dose per fraction: a new chapter in the story of the abscopal effect? Int J Radiat Oncol Biol Phys. 2017 Nov 1;99(3):677–9.CrossRefPubMed
22.
go back to reference Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8(11):1981–97.CrossRefPubMed Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8(11):1981–97.CrossRefPubMed
23.
go back to reference Franken NA, Oei AL, Kok HP, Rodermond HM, Sminia P, Crezee J, et al. Cell survival and radiosensitisation: modulation of the linear and quadratic parameters of the LQ model (Review). Int J Oncol. 2013;42(5):1501–15.CrossRefPubMed Franken NA, Oei AL, Kok HP, Rodermond HM, Sminia P, Crezee J, et al. Cell survival and radiosensitisation: modulation of the linear and quadratic parameters of the LQ model (Review). Int J Oncol. 2013;42(5):1501–15.CrossRefPubMed
24.
go back to reference Franken NA, Barendsen GW. Enhancement of radiation effectiveness by hyperthermia and incorporation of halogenated pyrimidines at low radiation doses as compared with high doses: implications for mechanisms. Int J Radiat Biol. 2014;90(4):313–7.CrossRefPubMed Franken NA, Barendsen GW. Enhancement of radiation effectiveness by hyperthermia and incorporation of halogenated pyrimidines at low radiation doses as compared with high doses: implications for mechanisms. Int J Radiat Biol. 2014;90(4):313–7.CrossRefPubMed
25.
go back to reference Schneider U, Besserer J, Mack A. Hypofractionated radiotherapy has the potential for second cancer reduction. Theor Biol Med Model. 2010;11(7):4.CrossRef Schneider U, Besserer J, Mack A. Hypofractionated radiotherapy has the potential for second cancer reduction. Theor Biol Med Model. 2010;11(7):4.CrossRef
26.
go back to reference Dee EC, Muralidhar V, King MT, Martin NE, D’Amico AV, Mouw KW, et al. Second malignancy probabilities in prostate cancer patients treated with SBRT and other contemporary radiation techniques. Radiother Oncol. 2021;161:241–50.CrossRefPubMed Dee EC, Muralidhar V, King MT, Martin NE, D’Amico AV, Mouw KW, et al. Second malignancy probabilities in prostate cancer patients treated with SBRT and other contemporary radiation techniques. Radiother Oncol. 2021;161:241–50.CrossRefPubMed
27.
go back to reference Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014 Jul 16;6(245):245ra93. Favaudon V, Caplier L, Monceau V, Pouzoulet F, Sayarath M, Fouillade C, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014 Jul 16;6(245):245ra93.
28.
go back to reference Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological aspects of FLASH radiotherapy Biomolecules. 2022;12:1376.PubMed Hageman E, Che PP, Dahele M, Slotman BJ, Sminia P. Radiobiological aspects of FLASH radiotherapy Biomolecules. 2022;12:1376.PubMed
29.
go back to reference Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys. 2022;49(3):1993–2013.CrossRefPubMed Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys. 2022;49(3):1993–2013.CrossRefPubMed
30.
go back to reference Steel GG, Deacon JM, Duchesne GM, Horwich A, Kelland LR, Peacock JH. The dose-rate effect in human tumour cells. Radiother Oncol. 1987;9(4):299–310.CrossRefPubMed Steel GG, Deacon JM, Duchesne GM, Horwich A, Kelland LR, Peacock JH. The dose-rate effect in human tumour cells. Radiother Oncol. 1987;9(4):299–310.CrossRefPubMed
31.
go back to reference Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.CrossRefPubMedPubMedCentral Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.CrossRefPubMedPubMedCentral
32.
go back to reference Clement CH, Stewart FA. International Commission on Radiological Protection, Editors. ICRP Publ. 118: ICRP Statement on tissue reactions and early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions in a radiation protection context. Vol 41 (1/2). Oxford: Published for the International Commission on Radiological Protection by Elsevier; 2012. Clement CH, Stewart FA. International Commission on Radiological Protection, Editors. ICRP Publ. 118: ICRP Statement on tissue reactions and early and late effects of radiation in normal tissues and organs: threshold doses for tissue reactions in a radiation protection context. Vol 41 (1/2). Oxford: Published for the International Commission on Radiological Protection by Elsevier; 2012.
Metagegevens
Titel
Radiobiologie in de radiotherapie
Auteur
Dr. P. Sminia
Copyright
2023
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2938-0_10