Skip to main content
Top
Gepubliceerd in: Psychological Research 6/2007

01-11-2007 | Original Article

Motion misperception caused by feedback connections: A neural model simulating the Fröhlich effect

Auteurs: Elena Carbone, Marc Pomplun

Gepubliceerd in: Psychological Research | Uitgave 6/2007

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

When asked to indicate the starting position of a fast moving stimulus, observers do not indicate the actual starting position but a later position on the motion trajectory. This perceptual illusion is known as the “Fröhlich effect”. We present a neural model aimed at simulating this phenomenon based on feedforward and feedback connections. The basic simulation mechanisms seem to be compatible with the attentional and the motion extrapolation account. A comparison between simulated and empirical results showed that the model is capable of generating the same main effects as those found in the empirical data.
Voetnoten
1
RFsize (degrees)=0.57·eccentricity0.69 (after Rosa et al., 1997).
 
2
$$o_{i}(t) = \frac{1}{{1 + \hbox{e}^{ - (\hbox{net}_{i}(t) + o_{i}(t - 1)/2) - \theta)/\tau } }}$$
where net i (t) is the weighted sum of inputs and o i (t) is the output of neuron i at time t (after Skapura, 1996, but the former output is added to the input value).
 
3
For a layer with neurons 1, ..., N, and o i min being the minimal output of neuron i, the center of gravity of its activation is located at position c(t) as computed by the following equation:
$$c(t) = \frac{{\sum\limits_{i = 1}^N {i \left(o_{i}(t) - o_{i}^{\rm min} \right)} }}{{\sum\limits_{i = 1}^N {\left(o_{i}(t) - o_{i}^{\rm min}\right)} }}.$$
 
4
This led to virtual retrace rates of 21.85 and 121.55 Hz. The virtual retrace rates do not match those of Müsseler and Aschersleben (1998) because the subject–screen distance, the stimulus size, and the way to generate the motion of the stimulus differed between the simulation and the actual experiments.
 
Literatuur
go back to reference Baldo, M. V. C., & Caticha, N. (2004). Compuational neurobiology of visual illusions: The flash-lag and Fröhlich effects emerge from simple neural networks. Perception, 33, S32. Baldo, M. V. C., & Caticha, N. (2004). Compuational neurobiology of visual illusions: The flash-lag and Fröhlich effects emerge from simple neural networks. Perception, 33, S32.
go back to reference Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception, 31, 17–30.PubMedCrossRef Baldo, M. V. C., Kihara, A. H., Namba, J., & Klein, S. A. (2002). Evidence for an attentional component of the perceptual misalignment between moving and flashing stimuli. Perception, 31, 17–30.PubMedCrossRef
go back to reference Carbone, E. (2001). Die Rolle von Aufmerksamkeitsprozessen bei der Fehlwahrnehmung dynamischer Reize [The role of attentional processes in the misperception of dynamic stimuli]. Unpublished dissertation, Bielefeld University, Germany. Carbone, E. (2001). Die Rolle von Aufmerksamkeitsprozessen bei der Fehlwahrnehmung dynamischer Reize [The role of attentional processes in the misperception of dynamic stimuli]. Unpublished dissertation, Bielefeld University, Germany.
go back to reference Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507.CrossRef Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129, 481–507.CrossRef
go back to reference Driver, J., & Spence, C. (2000). Multisensory perception: Beyond modularity and convergence. Current Biology, 10, 731–735.CrossRef Driver, J., & Spence, C. (2000). Multisensory perception: Beyond modularity and convergence. Current Biology, 10, 731–735.CrossRef
go back to reference Fröhlich, F. W. (1921). Untersuchungen über periodische Nachbilder [Studies on periodic afterimages]. Zeitschrift für Sinnesphysiologie, 52, 60–88. Fröhlich, F. W. (1921). Untersuchungen über periodische Nachbilder [Studies on periodic afterimages]. Zeitschrift für Sinnesphysiologie, 52, 60–88.
go back to reference Fröhlich, F. W. (1929). Die Empfindungszeit [The sensation time]. Jena: Fischer. Fröhlich, F. W. (1929). Die Empfindungszeit [The sensation time]. Jena: Fischer.
go back to reference Lamme, V. A. F., & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579.PubMedCrossRef Lamme, V. A. F., & Roelfsema, P. R. (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23, 571–579.PubMedCrossRef
go back to reference Luck, S. J. (1998). Neurophysiology of selective attention. In H. Pashler (Ed.), Attention (pp. 257–295). Hove: Psychology Press. Luck, S. J. (1998). Neurophysiology of selective attention. In H. Pashler (Ed.), Attention (pp. 257–295). Hove: Psychology Press.
go back to reference Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J. et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369.PubMedCrossRef Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J. et al. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364–369.PubMedCrossRef
go back to reference Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research, 28, 711–719.PubMedCrossRef Mateeff, S., & Hohnsbein, J. (1988). Perceptual latencies are shorter for motion towards the fovea than for motion away. Vision Research, 28, 711–719.PubMedCrossRef
go back to reference Mateeff, S., Yakimoff, N., Hohnsbein, J., Ehrenstein, W. H., Bohdanecky, Z., & Radil, T. (1991). Selective directional sensitivity in visual motion perception. Vision Research, 31, 131–138.PubMedCrossRef Mateeff, S., Yakimoff, N., Hohnsbein, J., Ehrenstein, W. H., Bohdanecky, Z., & Radil, T. (1991). Selective directional sensitivity in visual motion perception. Vision Research, 31, 131–138.PubMedCrossRef
go back to reference Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics, 60, 683–695. Müsseler, J., & Aschersleben, G. (1998). Localizing the first position of a moving stimulus: The Fröhlich effect and an attention-shifting explanation. Perception & Psychophysics, 60, 683–695.
go back to reference Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (Tandem Effect): Evidence for an attention-shifting model. Psychological Research, 54, 246–266.PubMedCrossRef Müsseler, J., & Neumann, O. (1992). Apparent distance reduction with moving stimuli (Tandem Effect): Evidence for an attention-shifting model. Psychological Research, 54, 246–266.PubMedCrossRef
go back to reference Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag effect and representational momentum. Visual Cognition, 9, 120–138.CrossRef Müsseler, J., Stork, S., & Kerzel, D. (2002). Comparing mislocalizations with moving stimuli: The Fröhlich effect, the flash-lag effect and representational momentum. Visual Cognition, 9, 120–138.CrossRef
go back to reference Neumann, O. (1982). Experimente zum Fehrer-Raab-Effekt und das ‘Wetterwart’-Modell der visuellen Maskierung [Experiments on the Fehrer-Raab effect and the ‘Weather-Station’ model of visual masking]. Report No. 24/1982, Department of Psychology at the Ruhr-University Bochum, Cognitive Psychology Unit. Neumann, O. (1982). Experimente zum Fehrer-Raab-Effekt und das ‘Wetterwart’-Modell der visuellen Maskierung [Experiments on the Fehrer-Raab effect and the ‘Weather-Station’ model of visual masking]. Report No. 24/1982, Department of Psychology at the Ruhr-University Bochum, Cognitive Psychology Unit.
go back to reference Neumann, O., & Müsseler, J. (1990). Visuelles Fokussieren: Das Wetterwart-Modell und einige seiner Anwendungen [Visual focussing: The Weather-Station model and some of its applications]. In C. Meinecke & L. Kehrer (Eds.), Bielefelder Beiträge zur Kognitionspsychologie (pp.77–108). Göttingen: Hogrefe. Neumann, O., & Müsseler, J. (1990). Visuelles Fokussieren: Das Wetterwart-Modell und einige seiner Anwendungen [Visual focussing: The Weather-Station model and some of its applications]. In C. Meinecke & L. Kehrer (Eds.), Bielefelder Beiträge zur Kognitionspsychologie (pp.77–108). Göttingen: Hogrefe.
go back to reference Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature, 386, 66–69.PubMedCrossRef Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature, 386, 66–69.PubMedCrossRef
go back to reference Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6, 387–393.PubMedCrossRef Nijhawan, R. (2002). Neural delays, visual motion and the flash-lag effect. Trends in Cognitive Sciences, 6, 387–393.PubMedCrossRef
go back to reference Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292, 510–512.PubMed Pascual-Leone, A., & Walsh, V. (2001). Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science, 292, 510–512.PubMed
go back to reference Purushothaman, G., Patel, S. S., Bedell, H. E., & Ogmen, H. (1998). Moving ahead through differential visual latency. Nature, 396, 424.PubMedCrossRef Purushothaman, G., Patel, S. S., Bedell, H. E., & Ogmen, H. (1998). Moving ahead through differential visual latency. Nature, 396, 424.PubMedCrossRef
go back to reference Rosa, M. G. P., Casagrande, V. A., Preuss, T., & Kaas, J. H. (1997). Visual field representation in striate and prestriate cortices of a prosimian Primate (galago garnetti). Journal of Neurophysiology, 77, 3193–3217.PubMed Rosa, M. G. P., Casagrande, V. A., Preuss, T., & Kaas, J. H. (1997). Visual field representation in striate and prestriate cortices of a prosimian Primate (galago garnetti). Journal of Neurophysiology, 77, 3193–3217.PubMed
go back to reference Scharlau, I., & Neumann, O. (2003). Perceptual latency priming by masked and unmasked stimuli: Evidence for an attentional explanation. Psychological Research, 67, 184–197.PubMedCrossRef Scharlau, I., & Neumann, O. (2003). Perceptual latency priming by masked and unmasked stimuli: Evidence for an attentional explanation. Psychological Research, 67, 184–197.PubMedCrossRef
go back to reference Skapura, D. M. (1996). Building neural networks. New York: Association for Computing Machinery (ACM) Press. Skapura, D. M. (1996). Building neural networks. New York: Association for Computing Machinery (ACM) Press.
Metagegevens
Titel
Motion misperception caused by feedback connections: A neural model simulating the Fröhlich effect
Auteurs
Elena Carbone
Marc Pomplun
Publicatiedatum
01-11-2007
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 6/2007
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-006-0060-8

Andere artikelen Uitgave 6/2007

Psychological Research 6/2007 Naar de uitgave