Skip to main content
Top

2014 | OriginalPaper | Hoofdstuk

16. Guided Tissue Regeneration in Endodontic Surgery: Principle, Efficacy, and Complications

Auteurs : Louis M. Lin, BDS, DMD, PhD, Domenico Ricucci, MD, DDS, Thomas von Arx, Prof. Dr. Med. Dent.

Gepubliceerd in: Complications in Endodontic Surgery

Uitgeverij: Springer Berlin Heidelberg

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The concept of guided tissue regeneration (GTR) in endodontic surgery is derived from periodontal regenerative therapy for periodontal disease. Periapical tissue regeneration will occur predictably after endodontic surgery if intra- and extraradicular infections are controlled by adequate root-end resection and complete retrograde seal of the root canal. Indications for GTR technique in endodontic surgery are limited and should be clearly recognized to prevent misuse. They include: combined endodontic-periodontic lesions, through-and-through bone lesions, and large periapical lesions almost involving the alveolar crest bone. The materials, such as barrier membranes and bone grafts used in GTR technique should be biocompatible and approved by the FDA. Possible pre-surgical, intra-surgical, and post-surgical complications of GTR technique in endodontic surgery must be prevented to avoid failures. GTR technique in endodontic surgery could improve periapical wound healing in through-and through bone lesions and possibly in cases with large periapical lesions.
Literatuur
4.
go back to reference Apaydin ES, Torabinejad M. The effect of calcium sulfate on hard tissue healing after periapical surgery. J Endod. 2004;30:17–20.PubMedCrossRef Apaydin ES, Torabinejad M. The effect of calcium sulfate on hard tissue healing after periapical surgery. J Endod. 2004;30:17–20.PubMedCrossRef
5.
go back to reference Artzi Z, Wasersprung N, Weinreb M, et al. Effect of guided tissue regeneration on newly formed bone and cementum in periapical tissue healing after endodontic surgery: an in vivo study in the cat. J Endod. 2012;38:163–9.PubMedCrossRef Artzi Z, Wasersprung N, Weinreb M, et al. Effect of guided tissue regeneration on newly formed bone and cementum in periapical tissue healing after endodontic surgery: an in vivo study in the cat. J Endod. 2012;38:163–9.PubMedCrossRef
6.
go back to reference Baek S-H, Kim S. Bone repair of experimentally induced through-and–through defects by Gore-Tex, Guidor, and Vicryl in ferrets: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:710–4.PubMedCrossRef Baek S-H, Kim S. Bone repair of experimentally induced through-and–through defects by Gore-Tex, Guidor, and Vicryl in ferrets: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;91:710–4.PubMedCrossRef
7.
8.
go back to reference Beck-Coon RJ, Newton CW, Kafrawy AH. An in vivo study of the use of nonresorbable ceramic hydroxyapatite as an alloplastic graft material in periapical surgery. Oral Surg Oral Med Oral Pathol. 1991;71:483–8.PubMedCrossRef Beck-Coon RJ, Newton CW, Kafrawy AH. An in vivo study of the use of nonresorbable ceramic hydroxyapatite as an alloplastic graft material in periapical surgery. Oral Surg Oral Med Oral Pathol. 1991;71:483–8.PubMedCrossRef
9.
go back to reference Bergenholtz G, Wikesjö UME, Sorensen RG, et al. Observation on healing following endodontic surgery in nonhuman primates (Macaca fascicularis): effect of rhBMP-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:116–25.PubMedCrossRef Bergenholtz G, Wikesjö UME, Sorensen RG, et al. Observation on healing following endodontic surgery in nonhuman primates (Macaca fascicularis): effect of rhBMP-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:116–25.PubMedCrossRef
10.
go back to reference Bernabé PF, Gomes-Filho JE, Cintra LT, et al. Histologic evaluation of the use of membrane, bone graft, and MTA in apical surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:309–14.PubMedCrossRef Bernabé PF, Gomes-Filho JE, Cintra LT, et al. Histologic evaluation of the use of membrane, bone graft, and MTA in apical surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:309–14.PubMedCrossRef
11.
go back to reference Britian SK, von Arx T, Schenk RK, et al. The use of guided tissue regeneration principles in endodontic surgery for induced chronic periodontic-endodontic lesions: a clinical, radiographic and histological evaluation. J Periodontol. 2005;76:450–60.CrossRef Britian SK, von Arx T, Schenk RK, et al. The use of guided tissue regeneration principles in endodontic surgery for induced chronic periodontic-endodontic lesions: a clinical, radiographic and histological evaluation. J Periodontol. 2005;76:450–60.CrossRef
12.
go back to reference Calori GM, Mazza E, Colombo M, et al. The use of bone-graft substitutes in large bone defects: Any specific need? Injury. 2011;42:S56–63.PubMedCrossRef Calori GM, Mazza E, Colombo M, et al. The use of bone-graft substitutes in large bone defects: Any specific need? Injury. 2011;42:S56–63.PubMedCrossRef
13.
go back to reference Chastain SR, Kundu AK, Dhar S, et al. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A. 2006;78: 73–85.PubMedCrossRef Chastain SR, Kundu AK, Dhar S, et al. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res A. 2006;78: 73–85.PubMedCrossRef
14.
go back to reference Chen M-F, Hwang T-L, Hung C-F. Human liver regeneration after major hepatectomy. Ann Surg. 1991;3:227–9.CrossRef Chen M-F, Hwang T-L, Hung C-F. Human liver regeneration after major hepatectomy. Ann Surg. 1991;3:227–9.CrossRef
15.
go back to reference Cooper GM, Mooney MP, Gosain AK, et al. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg. 2010;125:1685–92.PubMedCentralPubMedCrossRef Cooper GM, Mooney MP, Gosain AK, et al. Testing the critical size in calvarial bone defects: revisiting the concept of a critical-size defect. Plast Reconstr Surg. 2010;125:1685–92.PubMedCentralPubMedCrossRef
16.
go back to reference Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81:672–6.PubMedCrossRef Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81:672–6.PubMedCrossRef
17.
go back to reference Dahlin C, Gottlow J, Linde A, Nyman S. Healing of maxillary and mandibular bone defects using a membrane technique: an experimental study in monkeys. Scand J Plast Reconstr Surg Hand Surg. 1990;24:13–9.PubMedCrossRef Dahlin C, Gottlow J, Linde A, Nyman S. Healing of maxillary and mandibular bone defects using a membrane technique: an experimental study in monkeys. Scand J Plast Reconstr Surg Hand Surg. 1990;24:13–9.PubMedCrossRef
18.
go back to reference Douglass A, Wallace K, Parr R, et al. Antibody-targeted myofibroblast apoptosis reduces fibrosis during sustained liver injury. J Hepatol. 2008;49:88–98.PubMedCrossRef Douglass A, Wallace K, Parr R, et al. Antibody-targeted myofibroblast apoptosis reduces fibrosis during sustained liver injury. J Hepatol. 2008;49:88–98.PubMedCrossRef
19.
go back to reference De Long Jr WG, Einhorn TA, Koval K, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. J Bone Joint Surg Am. 2007;89:649–58.CrossRef De Long Jr WG, Einhorn TA, Koval K, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. J Bone Joint Surg Am. 2007;89:649–58.CrossRef
20.
go back to reference Dimitrious R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392–404.CrossRef Dimitrious R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392–404.CrossRef
21.
go back to reference Douthitt JC, Gutmann JL, Witherspoon DE. Histologic assessment of healing after the use of a bioresorbable membrane in the management of buccal bone loss concomitant with periapical surgery. J Endod. 2001;27:404–10.PubMedCrossRef Douthitt JC, Gutmann JL, Witherspoon DE. Histologic assessment of healing after the use of a bioresorbable membrane in the management of buccal bone loss concomitant with periapical surgery. J Endod. 2001;27:404–10.PubMedCrossRef
22.
go back to reference Ebihara Y, Masuya M, Larue AC, et al. Hematopoietic origin of fibroblasts: II – in vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp Hematol. 2006;34:219–29.PubMedCrossRef Ebihara Y, Masuya M, Larue AC, et al. Hematopoietic origin of fibroblasts: II – in vitro studies of fibroblasts, CFU-F, and fibrocytes. Exp Hematol. 2006;34:219–29.PubMedCrossRef
23.
go back to reference Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man. A study of the problems of wound infection. Br J Exp Pathol. 1957;38:573–88.PubMedCentralPubMed Elek SD, Conen PE. The virulence of Staphylococcus pyogenes for man. A study of the problems of wound infection. Br J Exp Pathol. 1957;38:573–88.PubMedCentralPubMed
24.
go back to reference Garrett K, Kerr M, Hartwell G, et al. The effect of bioresorbable matrix barrier in endodontic surgery on the rate of periapical healing: an in vivo study. J Endod. 2002;28:503–6.PubMedCrossRef Garrett K, Kerr M, Hartwell G, et al. The effect of bioresorbable matrix barrier in endodontic surgery on the rate of periapical healing: an in vivo study. J Endod. 2002;28:503–6.PubMedCrossRef
25.
go back to reference Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;365:S20–7.CrossRef Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;365:S20–7.CrossRef
26.
go back to reference Goyal B, Tewari S, Duhan J, et al. Comparative evaluation of platelet-rich plasma and guided tissue regeneration membrane in the healing of apicomarginal defects: a clinical study. J Endod. 2011;37:773–80.PubMedCrossRef Goyal B, Tewari S, Duhan J, et al. Comparative evaluation of platelet-rich plasma and guided tissue regeneration membrane in the healing of apicomarginal defects: a clinical study. J Endod. 2011;37:773–80.PubMedCrossRef
27.
go back to reference Grung B, Molven O, Halse A. Periapical surgery in a Norwegian county hospital: follow-up findings of 477 teeth. J Endod. 1990;16:411–7.PubMedCrossRef Grung B, Molven O, Halse A. Periapical surgery in a Norwegian county hospital: follow-up findings of 477 teeth. J Endod. 1990;16:411–7.PubMedCrossRef
28.
go back to reference Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453:314–21.PubMedCrossRef Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453:314–21.PubMedCrossRef
29.
go back to reference Halse A, Molven O, Grung B. Follow-up after periapical surgery: the value of the one-year control. Dent Traumatol. 1991;7:246–50.CrossRef Halse A, Molven O, Grung B. Follow-up after periapical surgery: the value of the one-year control. Dent Traumatol. 1991;7:246–50.CrossRef
31.
go back to reference Hjorting-Hansen E, Andreasen JO. Incomplete bone healing of experimental cavities in dog mandibles. Br J Oral Surg. 1971;9:33–40.PubMedCrossRef Hjorting-Hansen E, Andreasen JO. Incomplete bone healing of experimental cavities in dog mandibles. Br J Oral Surg. 1971;9:33–40.PubMedCrossRef
32.
go back to reference Hotary K, Lin X-Y, Allen E, et al. A cancer cell metalloproteinase regulates the basement membrane transmigration program. Genes Dev. 2006;20:2673–86.PubMedCentralPubMedCrossRef Hotary K, Lin X-Y, Allen E, et al. A cancer cell metalloproteinase regulates the basement membrane transmigration program. Genes Dev. 2006;20:2673–86.PubMedCentralPubMedCrossRef
33.
go back to reference Huh JY, Choi BH, Kim BY, et al. Critical size defect in the canine mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:296–301.PubMedCrossRef Huh JY, Choi BH, Kim BY, et al. Critical size defect in the canine mandible. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;100:296–301.PubMedCrossRef
34.
go back to reference Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffold with growth factors and/or stem cells. Injury. 2011;42:S77–81.PubMedCrossRef Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffold with growth factors and/or stem cells. Injury. 2011;42:S77–81.PubMedCrossRef
35.
36.
go back to reference Kissin E, Korn JH. Apoptosis and myofibroblasts in the pathogenesis of systemic sclerosis. Curr Rheumatol Rep. 2002;4:129–35.PubMedCrossRef Kissin E, Korn JH. Apoptosis and myofibroblasts in the pathogenesis of systemic sclerosis. Curr Rheumatol Rep. 2002;4:129–35.PubMedCrossRef
37.
go back to reference Krummel TM, Michna BA, Thomas BL, et al. Transforming growth factor beta (TGF-β) induces fibrosis in a fetal wound healing. J Pediatr Surg. 1988;23:647–52.PubMedCrossRef Krummel TM, Michna BA, Thomas BL, et al. Transforming growth factor beta (TGF-β) induces fibrosis in a fetal wound healing. J Pediatr Surg. 1988;23:647–52.PubMedCrossRef
38.
go back to reference Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.PubMedCrossRef Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359–69.PubMedCrossRef
39.
40.
go back to reference Lin L, Skribner J, Shovlin F, Langeland K. Periapical surgery of mandibular posterior teeth: anatomical and surgical considerations. J Endod. 1983;9:496–501.PubMedCrossRef Lin L, Skribner J, Shovlin F, Langeland K. Periapical surgery of mandibular posterior teeth: anatomical and surgical considerations. J Endod. 1983;9:496–501.PubMedCrossRef
41.
go back to reference Lin L, Chance K, Shovlin F, et al. Oroantral communication in periapical surgery of maxillary posterior teeth. J Endod. 1985;11:40–4.PubMedCrossRef Lin L, Chance K, Shovlin F, et al. Oroantral communication in periapical surgery of maxillary posterior teeth. J Endod. 1985;11:40–4.PubMedCrossRef
42.
go back to reference Lin L, Chen MY-H, Ricucci D, et al. Guided tissue regeneration in periapical surgery. J Endod. 2010;36:618–25.PubMedCrossRef Lin L, Chen MY-H, Ricucci D, et al. Guided tissue regeneration in periapical surgery. J Endod. 2010;36:618–25.PubMedCrossRef
43.
go back to reference Maguire H, Torabinejad M, McMillan P, et al. Effects of resorbable membrane placement and human osteogenic protein-1 on hard tissue healing after periapical surgery in cats. J Endod. 1998;24:720–5.PubMedCrossRef Maguire H, Torabinejad M, McMillan P, et al. Effects of resorbable membrane placement and human osteogenic protein-1 on hard tissue healing after periapical surgery in cats. J Endod. 1998;24:720–5.PubMedCrossRef
44.
go back to reference Matsura T, Hosokawa R, Okamoto K, et al. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials. 2000;21:1121–7.CrossRef Matsura T, Hosokawa R, Okamoto K, et al. Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials. 2000;21:1121–7.CrossRef
45.
go back to reference Molven O, Halse A, Grung B. Incomplete healing (scar tissue) after periapical surgery – radiographic findings 8 to 12 years after treatment. J Endod. 1996;22:264–8.PubMedCrossRef Molven O, Halse A, Grung B. Incomplete healing (scar tissue) after periapical surgery – radiographic findings 8 to 12 years after treatment. J Endod. 1996;22:264–8.PubMedCrossRef
46.
go back to reference Mutsaers SE, Bishop JE, McGrouther G, et al. Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol. 1997;29:5–17.PubMedCrossRef Mutsaers SE, Bishop JE, McGrouther G, et al. Mechanisms of tissue repair: from wound healing to fibrosis. Int J Biochem Cell Biol. 1997;29:5–17.PubMedCrossRef
47.
go back to reference Naylor J, Mines P, Anderson A, Kwon D. The use of guided tissue regeneration techniques among endodontists: a web-based survey. J Endod. 2011;37: 1495–8.PubMedCrossRef Naylor J, Mines P, Anderson A, Kwon D. The use of guided tissue regeneration techniques among endodontists: a web-based survey. J Endod. 2011;37: 1495–8.PubMedCrossRef
48.
go back to reference Needleman IG, Giedrys-Leeper E, Tucker RJ, Worthington NV. Results of guided tissue regeneration are highly variable. Evid Based Dent. 2002;3: 12–23.CrossRef Needleman IG, Giedrys-Leeper E, Tucker RJ, Worthington NV. Results of guided tissue regeneration are highly variable. Evid Based Dent. 2002;3: 12–23.CrossRef
49.
go back to reference Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev. 2006;(2);CD001724. Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev. 2006;(2);CD001724.
50.
51.
go back to reference Nyman S, Gottlow J, Lindhe J, et al. New attachment formation by guided tissue regeneration. J Periodontal Res. 1987;22:252–4.PubMedCrossRef Nyman S, Gottlow J, Lindhe J, et al. New attachment formation by guided tissue regeneration. J Periodontal Res. 1987;22:252–4.PubMedCrossRef
52.
go back to reference Oh S-L, Fouad AF, Park S-H. Treatment strategy for guided tissue regeneration in combined endodontic-periodontic lesions: case report and literature review. J Endod. 2009;35:1331–6.PubMedCrossRef Oh S-L, Fouad AF, Park S-H. Treatment strategy for guided tissue regeneration in combined endodontic-periodontic lesions: case report and literature review. J Endod. 2009;35:1331–6.PubMedCrossRef
53.
go back to reference Palecek SP, Loftus JC, Ginsberg MH, et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997;385:537–40.PubMedCrossRef Palecek SP, Loftus JC, Ginsberg MH, et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature. 1997;385:537–40.PubMedCrossRef
54.
go back to reference Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48:142–8.PubMed Parikh SN. Bone graft substitutes: past, present, future. J Postgrad Med. 2002;48:142–8.PubMed
55.
go back to reference Pecora G, Kim S, Celletti R, Davarpanah M. The guided tissue regeneration principle in endodontic surgery: one-year postoperative results of large periapical lesions. Int Endod J. 1995;28:41–6.PubMedCrossRef Pecora G, Kim S, Celletti R, Davarpanah M. The guided tissue regeneration principle in endodontic surgery: one-year postoperative results of large periapical lesions. Int Endod J. 1995;28:41–6.PubMedCrossRef
56.
go back to reference Pecora G, Baek S-H, Rethnam S, Kim S. Barrier membrane techniques in endodontic surgery. Dent Clin N Am. 1997;41:585–602.PubMed Pecora G, Baek S-H, Rethnam S, Kim S. Barrier membrane techniques in endodontic surgery. Dent Clin N Am. 1997;41:585–602.PubMed
57.
go back to reference Pecora G, de Leonardis D, Ibrahim N, et al. The use of calcium sulfate in the surgical treatment of a “through and through” periapical lesion. Int Endod J. 2001;34:189–97.PubMedCrossRef Pecora G, de Leonardis D, Ibrahim N, et al. The use of calcium sulfate in the surgical treatment of a “through and through” periapical lesion. Int Endod J. 2001;34:189–97.PubMedCrossRef
58.
go back to reference Pinto VS, Zuolo ML, Mellonig JT. Guided bone regeneration in the treatment of a large periapical lesion: a case report. Pract Periodontics Aesthet Dent. 1995;7:76–81.PubMed Pinto VS, Zuolo ML, Mellonig JT. Guided bone regeneration in the treatment of a large periapical lesion: a case report. Pract Periodontics Aesthet Dent. 1995;7:76–81.PubMed
59.
go back to reference Pompa DG. Guided tissue repair of complete buccal dehiscence associated with periapical defects: a clinical prospective study. J Am Dent Assoc. 1997;128:989–97.PubMedCrossRef Pompa DG. Guided tissue repair of complete buccal dehiscence associated with periapical defects: a clinical prospective study. J Am Dent Assoc. 1997;128:989–97.PubMedCrossRef
60.
go back to reference Rankow HJ, Krasner PR. Endodontic applications of guided tissue regeneration in endodontic surgery. J Endod. 1996;22:34–43.PubMedCrossRef Rankow HJ, Krasner PR. Endodontic applications of guided tissue regeneration in endodontic surgery. J Endod. 1996;22:34–43.PubMedCrossRef
61.
go back to reference Regan JD, Gutmann JL, Lacopino AM, et al. Response of periradicular tissue to growth factors introduced into the surgical site in the root-end filling material. Int Endod J. 1999;32:171–82.PubMedCrossRef Regan JD, Gutmann JL, Lacopino AM, et al. Response of periradicular tissue to growth factors introduced into the surgical site in the root-end filling material. Int Endod J. 1999;32:171–82.PubMedCrossRef
62.
go back to reference Rud J, Andreasen JO, Moller-Jensen JE. A multivariate analysis of the influence of various factors upon healing after endodontic surgery. Int J Oral Surg. 1972;1:258–71.PubMedCrossRef Rud J, Andreasen JO, Moller-Jensen JE. A multivariate analysis of the influence of various factors upon healing after endodontic surgery. Int J Oral Surg. 1972;1:258–71.PubMedCrossRef
63.
go back to reference Saad AY, Abdellatief EM. Healing assessment of osseous defects of periapical lesions associated with failed endodontically treated teeth with use of freeze-dried bone allograft. Oral Surg Oral Med Oral Pathol. 1991;71:612–7.PubMedCrossRef Saad AY, Abdellatief EM. Healing assessment of osseous defects of periapical lesions associated with failed endodontically treated teeth with use of freeze-dried bone allograft. Oral Surg Oral Med Oral Pathol. 1991;71:612–7.PubMedCrossRef
64.
go back to reference Sarrazy V, Billet F, Micallef L, et al. Mechanisms of pathological scarring: role of myofibroblasts and current development. Wound Repair Regen. 2011;19:S10–5.PubMedCrossRef Sarrazy V, Billet F, Micallef L, et al. Mechanisms of pathological scarring: role of myofibroblasts and current development. Wound Repair Regen. 2011;19:S10–5.PubMedCrossRef
65.
go back to reference Schwartz F, Herten M, Ferrari D, et al. Guided tissue regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): an immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007;36:1198–206.CrossRef Schwartz F, Herten M, Ferrari D, et al. Guided tissue regeneration at dehiscence-type defects using biphasic hydroxyapatite + beta tricalcium phosphate (Bone Ceramic) or a collagen-coated natural bone mineral (BioOss Collagen): an immunohistochemical study in dogs. Int J Oral Maxillofac Surg. 2007;36:1198–206.CrossRef
66.
go back to reference Serini G, Bochaton-Piallat M-L, Ropraz P, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-ß1. J Cell Biol. 1998;142:873–81.PubMedCentralPubMedCrossRef Serini G, Bochaton-Piallat M-L, Ropraz P, et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-ß1. J Cell Biol. 1998;142:873–81.PubMedCentralPubMedCrossRef
67.
go back to reference Setzer FC, Shah SB, Kohli MR, et al. Outcome of endodontic surgery: a meta-analysis of the literature – part 1: comparison of traditional root-end surgery and endodontic microsurgery. J Endod. 2010;36:1757–65.PubMedCrossRef Setzer FC, Shah SB, Kohli MR, et al. Outcome of endodontic surgery: a meta-analysis of the literature – part 1: comparison of traditional root-end surgery and endodontic microsurgery. J Endod. 2010;36:1757–65.PubMedCrossRef
68.
go back to reference Shi H, Ma J, Zhao N, et al. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. J Mater Sci Mater Med. 2008;19:3515–24.PubMedCrossRef Shi H, Ma J, Zhao N, et al. Periodontal regeneration in experimentally-induced alveolar bone dehiscence by an improved porous biphasic calcium phosphate ceramic in beagle dogs. J Mater Sci Mater Med. 2008;19:3515–24.PubMedCrossRef
69.
go back to reference Siebers MC, ter Brugge PJ, Walboomers XF, et al. Integrins as linker proteins between osteoblasts and bone replacement materials. A critical review. Biomaterials. 2005;26:137–46.PubMedCrossRef Siebers MC, ter Brugge PJ, Walboomers XF, et al. Integrins as linker proteins between osteoblasts and bone replacement materials. A critical review. Biomaterials. 2005;26:137–46.PubMedCrossRef
70.
go back to reference Stassen LFA, Hislop WS, Still DM, et al. Use of anorganic bone in periapical defects following apical surgery: a prospective trial. Br J Oral Maxillofac Surg. 1994;32:83–5.PubMedCrossRef Stassen LFA, Hislop WS, Still DM, et al. Use of anorganic bone in periapical defects following apical surgery: a prospective trial. Br J Oral Maxillofac Surg. 1994;32:83–5.PubMedCrossRef
72.
go back to reference Taschieri S, del Fabbro M, Testori T, et al. Efficacy of xenogenic bone grafting with guided tissue regeneration in the management of bone defects after surgical endodontics. J Oral Maxillofac Surg. 2007;65:1121–7.PubMedCrossRef Taschieri S, del Fabbro M, Testori T, et al. Efficacy of xenogenic bone grafting with guided tissue regeneration in the management of bone defects after surgical endodontics. J Oral Maxillofac Surg. 2007;65:1121–7.PubMedCrossRef
73.
go back to reference Taschieri S, del Fabbro M, Testori T, et al. Efficacy of guided tissue regeneration in the management of through-and-through lesions following surgical endodontics: a preliminary study. Int J Periodontics Restorative Dent. 2008;28:265–71.PubMed Taschieri S, del Fabbro M, Testori T, et al. Efficacy of guided tissue regeneration in the management of through-and-through lesions following surgical endodontics: a preliminary study. Int J Periodontics Restorative Dent. 2008;28:265–71.PubMed
74.
go back to reference Tobon SL, Arismendi JA, Marin ML, et al. Comparison between a conventional technique and two bone regeneration techniques in periradicular surgery. Int Endod J. 2002;35:635–41.PubMedCrossRef Tobon SL, Arismendi JA, Marin ML, et al. Comparison between a conventional technique and two bone regeneration techniques in periradicular surgery. Int Endod J. 2002;35:635–41.PubMedCrossRef
75.
go back to reference Tseng CC, Harn WM, Chen YH, et al. A new approach to the treatment of true combined endodontic-periodontic lesions by the guided tissue regeneration technique. J Endod. 1996;22:693–6.PubMedCrossRef Tseng CC, Harn WM, Chen YH, et al. A new approach to the treatment of true combined endodontic-periodontic lesions by the guided tissue regeneration technique. J Endod. 1996;22:693–6.PubMedCrossRef
76.
go back to reference Tsesis I, Faivishevsky V, Kfir A, Rosen E. Outcomes of surgical endodontic treatment performed by a modern technique: a meta-analysis of the literature. J Endod. 2009;35:1505–11.PubMedCrossRef Tsesis I, Faivishevsky V, Kfir A, Rosen E. Outcomes of surgical endodontic treatment performed by a modern technique: a meta-analysis of the literature. J Endod. 2009;35:1505–11.PubMedCrossRef
77.
go back to reference Tsesis I, Rosen E, Tamse A, et al. Effect of guided tissue regeneration on the outcome of surgical endodontic treatment: a systematic review and meta-analysis. J Endod. 2011;37:1039–45.PubMedCrossRef Tsesis I, Rosen E, Tamse A, et al. Effect of guided tissue regeneration on the outcome of surgical endodontic treatment: a systematic review and meta-analysis. J Endod. 2011;37:1039–45.PubMedCrossRef
78.
go back to reference Tsesis I, Rosen E, Taschieri S, et al. Outcomes of surgical endodontic treatment performed by a modern technique: an updated meta-analysis of the literature. J Endod. 2013;39:332–9.PubMedCrossRef Tsesis I, Rosen E, Taschieri S, et al. Outcomes of surgical endodontic treatment performed by a modern technique: an updated meta-analysis of the literature. J Endod. 2013;39:332–9.PubMedCrossRef
79.
go back to reference Urist MR, DeLange RJ, Finerman GA. Bone cell differentiation and growth factors. Science. 1983;220: 680–6.PubMedCrossRef Urist MR, DeLange RJ, Finerman GA. Bone cell differentiation and growth factors. Science. 1983;220: 680–6.PubMedCrossRef
80.
go back to reference Van der Veer WM, Bloemen MC, Ulrich MM, et al. Potential cellular and molecular causes of hypertrophic scar formation. Burns. 2009;35:15–29.PubMedCrossRef Van der Veer WM, Bloemen MC, Ulrich MM, et al. Potential cellular and molecular causes of hypertrophic scar formation. Burns. 2009;35:15–29.PubMedCrossRef
81.
go back to reference Vissink A, Burlage FR, Spijkervert FKL, et al. Prevention and treatment of the consequences of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14:213–25.PubMedCrossRef Vissink A, Burlage FR, Spijkervert FKL, et al. Prevention and treatment of the consequences of head and neck radiotherapy. Crit Rev Oral Biol Med. 2003;14:213–25.PubMedCrossRef
82.
go back to reference von Arx T, Häfliger J, Chappuis V. Neurosensory disturbances following bone harvesting in the symphysis. A prospective clinical study. Clin Oral Implants Res. 2005;16:432–9.CrossRef von Arx T, Häfliger J, Chappuis V. Neurosensory disturbances following bone harvesting in the symphysis. A prospective clinical study. Clin Oral Implants Res. 2005;16:432–9.CrossRef
83.
go back to reference von Arx T, Cochran DL. Rationale for the application of the GTR principle using a barrier membrane in endodontic surgery: a proposal of classification and literature review. Int J Periodontics Restorative Dent. 2001;21:127–39. von Arx T, Cochran DL. Rationale for the application of the GTR principle using a barrier membrane in endodontic surgery: a proposal of classification and literature review. Int J Periodontics Restorative Dent. 2001;21:127–39.
84.
go back to reference von Arx T, Chappuis V, Winzap-Kälin C, Bornstein MM. Laser Doppler flowmetry for assessment of anterior mandibular teeth in conjunction with bone harvesting in the symphysis: a clinical pilot study. Int J Oral Maxillofac Implants. 2007;22:383–9. von Arx T, Chappuis V, Winzap-Kälin C, Bornstein MM. Laser Doppler flowmetry for assessment of anterior mandibular teeth in conjunction with bone harvesting in the symphysis: a clinical pilot study. Int J Oral Maxillofac Implants. 2007;22:383–9.
85.
go back to reference von Arx T, Hänni S, Jensen SS. Correlation of bone defect dimensions with healing outcome one year after apical surgery. J Endod. 2007;33:1044–8.CrossRef von Arx T, Hänni S, Jensen SS. Correlation of bone defect dimensions with healing outcome one year after apical surgery. J Endod. 2007;33:1044–8.CrossRef
86.
go back to reference von Arx T, AlSaeed M. The use of regenerative techniques in apical surgery: a literature review. Saudi Dent J. 2011;23:113–27.CrossRef von Arx T, AlSaeed M. The use of regenerative techniques in apical surgery: a literature review. Saudi Dent J. 2011;23:113–27.CrossRef
87.
go back to reference Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.PubMed Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–70.PubMed
88.
90.
go back to reference Yoshikawa G, Murashima Y, Wadachi R, et al. Guided bone regeneration (GBR) using membrane and calcium sulfate after apicectomy: a comparative histomorphometrical study. Int Endod J. 1991;26:255–63. Yoshikawa G, Murashima Y, Wadachi R, et al. Guided bone regeneration (GBR) using membrane and calcium sulfate after apicectomy: a comparative histomorphometrical study. Int Endod J. 1991;26:255–63.
Metagegevens
Titel
Guided Tissue Regeneration in Endodontic Surgery: Principle, Efficacy, and Complications
Auteurs
Louis M. Lin, BDS, DMD, PhD
Domenico Ricucci, MD, DDS
Thomas von Arx, Prof. Dr. Med. Dent.
Copyright
2014
Uitgeverij
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-54218-3_16