Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2007

01-09-2007 | Original Article

Exploring the mental number line: evidence from a dual-task paradigm

Auteurs: Dana Müller, Wolf Schwarz

Gepubliceerd in: Psychological Research | Uitgave 5/2007

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

In a parity-judgment task smaller numbers are responded to faster with the left-hand key and vice versa for larger numbers (SNARC effect; Dehaene et al., in Journal of Experimental Psychology: General, 122, 371–396, 1993). We used the psychological refractory period paradigm involving a parity-judgment task and tone-discrimination task to address the question at which stage this effect arises. When the parity-judgment task is performed second, then we found equal SNARC effects for the short and the long SOA. According to the central bottleneck model, this indicates that the effect arises during the response-selection or execution stage. In Experiment 2 the parity-judgment task was performed first. The pattern of results indicates that the SNARC effect originates during the perceptual encoding or response-selection. Together, our results suggest that the SNARC effect originates while the response is selected.
Voetnoten
1
These words were used to ensure similar voice onset latencies for both responses
 
2
We also conducted the experiment with six participants and manually recorded their vocal responses. The pattern of results (for both the tone-discrimination task and the parity-judgment task) obtained were the same as those reported below in which the vocal errors were included. Moreover, the vocal error rate was very low (1.35%). We conclude that the vocal error rates do not influence the main pattern of our findings
 
3
We used a short SOA of 150 ms (in contrast to 50 ms in Experiment 1) as pre-experiments had indicated that a SOA of 50 ms made it very difficult for participants to discriminate which stimulus was presented first.
 
4
The t value and SE refer to transformed error rates.
 
Literatuur
go back to reference Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis. Cambridge: MIT Press. Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis. Cambridge: MIT Press.
go back to reference Brannon, E. M. (2005). What animals know about numbers. In: J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 85–107). New York: Psychology Press. Brannon, E. M. (2005). What animals know about numbers. In: J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 85–107). New York: Psychology Press.
go back to reference Caessens, B., Hommel, B., Reynvoet, B., & van der Goten, K. (2004). Backward-compatibility effects with irrelevant stimulus-response overlap: The case of the SNARC effect. Journal of General Psychology, 13, 411–425. Caessens, B., Hommel, B., Reynvoet, B., & van der Goten, K. (2004). Backward-compatibility effects with irrelevant stimulus-response overlap: The case of the SNARC effect. Journal of General Psychology, 13, 411–425.
go back to reference Campbell, J. I. D. (Ed.). (2005). Handbook of mathematical cognition. New York: Psychology Press. Campbell, J. I. D. (Ed.). (2005). Handbook of mathematical cognition. New York: Psychology Press.
go back to reference De Jong, R. (1993). Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology: Human Perception and Performance, 19, 965–980.PubMedCrossRef De Jong, R. (1993). Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology: Human Perception and Performance, 19, 965–980.PubMedCrossRef
go back to reference Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potential and the additive-factors method. Journal of Cognitive Neuroscience, 8, 47–68.CrossRef Dehaene, S. (1996). The organization of brain activations in number comparison: Event-related potential and the additive-factors method. Journal of Cognitive Neuroscience, 8, 47–68.CrossRef
go back to reference Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford University Press. Dehaene, S. (1997). The number sense. How the mind creates mathematics. New York: Oxford University Press.
go back to reference Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.CrossRef Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.CrossRef
go back to reference Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.PubMedCrossRef Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14, 218–224.PubMedCrossRef
go back to reference Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65, 250–259.PubMedCrossRef Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65, 250–259.PubMedCrossRef
go back to reference Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In: J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press. Fias, W., & Fischer, M. H. (2005). Spatial representation of numbers. In: J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 43–54). New York: Psychology Press.
go back to reference Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC-effect. Mathematical Cognition, 2, 95–110.CrossRef Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC-effect. Mathematical Cognition, 2, 95–110.CrossRef
go back to reference Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12, 415–423.PubMedCrossRef Fias, W., Lauwereyns, J., & Lammertyn, J. (2001). Irrelevant digits affect feature-based attention depending on the overlap of neural circuits. Cognitive Brain Research, 12, 415–423.PubMedCrossRef
go back to reference Fischer, M. H. (2003). Spatial representation in number processing—evidence from a pointing task. Visual Cognition, 10, 493–508.CrossRef Fischer, M. H. (2003). Spatial representation in number processing—evidence from a pointing task. Visual Cognition, 10, 493–508.CrossRef
go back to reference Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.PubMedCrossRef Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.PubMedCrossRef
go back to reference Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51, 91–97.PubMed Fischer, M. H., Warlop, N., Hill, R. L., & Fias, W. (2004). Oculomotor bias induced by number perception. Experimental Psychology, 51, 91–97.PubMed
go back to reference Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Neuroscience, 4, 59–65.CrossRef Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Neuroscience, 4, 59–65.CrossRef
go back to reference Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, B87–B95.PubMedCrossRef Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, B87–B95.PubMedCrossRef
go back to reference Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53, 58–68.PubMed Gevers, W., Ratinckx, E., De Baene, W., & Fias, W. (2006). Further evidence that the SNARC effect is processed along a dual-route architecture: Evidence from the lateralized readiness potential. Experimental Psychology, 53, 58–68.PubMed
go back to reference Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.PubMedCrossRef Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.PubMedCrossRef
go back to reference Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33, 681–695. Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33, 681–695.
go back to reference Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24, 48–56.PubMedCrossRef Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24, 48–56.PubMedCrossRef
go back to reference Lorch, R. F., Jr., & Meyers, J. L. (1990). Regression analyses of repeated measures data in cognition research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149–157.PubMedCrossRef Lorch, R. F., Jr., & Meyers, J. L. (1990). Regression analyses of repeated measures data in cognition research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149–157.PubMedCrossRef
go back to reference Mapelli, D., Rusconi, E., & Umiltà, C. (2003). The SNARC effect: An instance of the Simon effect? Cognition, 88, B1–B10.PubMedCrossRef Mapelli, D., Rusconi, E., & Umiltà, C. (2003). The SNARC effect: An instance of the Simon effect? Cognition, 88, B1–B10.PubMedCrossRef
go back to reference McCann, R. S., & Johnston, J. C. (1992). Locus of the single-channel bottleneck in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 18, 471–484.CrossRef McCann, R. S., & Johnston, J. C. (1992). Locus of the single-channel bottleneck in dual-task interference. Journal of Experimental Psychology: Human Perception and Performance, 18, 471–484.CrossRef
go back to reference McCann, R. S., Remington, R. W., & Van Selst, M. (2000). A dual-task investigation of automaticity in visual word processing. Journal of Experimental Psychology: Human Perception and Performance, 26, 1352–1370.PubMedCrossRef McCann, R. S., Remington, R. W., & Van Selst, M. (2000). A dual-task investigation of automaticity in visual word processing. Journal of Experimental Psychology: Human Perception and Performance, 26, 1352–1370.PubMedCrossRef
go back to reference Miller, J., & Reynolds, A. (2003). The locus of redundant-targets and nontargets effects: Evidence from the Psychological Refractory Period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 1126–1142.PubMedCrossRef Miller, J., & Reynolds, A. (2003). The locus of redundant-targets and nontargets effects: Evidence from the Psychological Refractory Period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 1126–1142.PubMedCrossRef
go back to reference Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520.PubMedCrossRef Moyer, R. S., & Landauer, T. K. (1967). Time required for judgments of numerical inequality. Nature, 215, 1519–1520.PubMedCrossRef
go back to reference Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC effect and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology, 57A, 835–863.PubMed Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC effect and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology, 57A, 835–863.PubMed
go back to reference Nuerk, H.-C., Wood, G., & Willmes, K. (2005). The universal SNARC effect. The association between number magnitude and space is amodal. Experimental Psychology, 52, 187–194.PubMed Nuerk, H.-C., Wood, G., & Willmes, K. (2005). The universal SNARC effect. The association between number magnitude and space is amodal. Experimental Psychology, 52, 187–194.PubMed
go back to reference Oriet, C., Tombu, M., & Jolicœur, P. (2005). Symbolic distance affects two processing loci in the number comparison task. Memory & Cognition, 33, 913–926. Oriet, C., Tombu, M., & Jolicœur, P. (2005). Symbolic distance affects two processing loci in the number comparison task. Memory & Cognition, 33, 913–926.
go back to reference Otten, L. J., Sudevan, P., Logan, G. D., & Coles, M. G. H. (1996). Magnitude versus parity in numerical judgments: Event-related brain potentials implicate response conflict as the source of interference. Acta Psychologica, 94, 21–40.PubMedCrossRef Otten, L. J., Sudevan, P., Logan, G. D., & Coles, M. G. H. (1996). Magnitude versus parity in numerical judgments: Event-related brain potentials implicate response conflict as the source of interference. Acta Psychologica, 94, 21–40.PubMedCrossRef
go back to reference Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358–377.PubMedCrossRef Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358–377.PubMedCrossRef
go back to reference Pashler, H. (1993a). Doing two things at the same time. American Scientist, 81, 48–55. Pashler, H. (1993a). Doing two things at the same time. American Scientist, 81, 48–55.
go back to reference Pashler, H. (1993b). Dual-task interference and elementary mental mechanisms. In D. Meyer & S. Kornblum (Eds.), Attention and performance XIV (pp. 245–264). Cambridge, MA: The MIT Press. Pashler, H. (1993b). Dual-task interference and elementary mental mechanisms. In D. Meyer & S. Kornblum (Eds.), Attention and performance XIV (pp. 245–264). Cambridge, MA: The MIT Press.
go back to reference Pashler, H. (1994). Dual task interference in simple tasks: Eata and theory. Psychological Bulletin, 116, 220–244.PubMedCrossRef Pashler, H. (1994). Dual task interference in simple tasks: Eata and theory. Psychological Bulletin, 116, 220–244.PubMedCrossRef
go back to reference Pashler, H. (1998). The psychology of attention. London: The MIT Press. Pashler, H. (1998). The psychology of attention. London: The MIT Press.
go back to reference Pashler, H., & Johnston, J. C. (1998). Attentional limitations in dual-task performance. In: H. Pashler (Ed.), Attention (pp.155–189). Hove: Psychology Press. Pashler, H., & Johnston, J. C. (1998). Attentional limitations in dual-task performance. In: H. Pashler (Ed.), Attention (pp.155–189). Hove: Psychology Press.
go back to reference Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14, 1013–1026.PubMedCrossRef Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of parietal activation by semantic distance in a number comparison task. NeuroImage, 14, 1013–1026.PubMedCrossRef
go back to reference Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278.CrossRef Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278.CrossRef
go back to reference Schwarz, W., & Ischebeck, A. (2001). On the interpretation of response time vs. onset asynchrony functions: Application to dual-task and precue-utilization paradigms. Journal of Mathematical Psychology, 45, 452–479.PubMedCrossRef Schwarz, W., & Ischebeck, A. (2001). On the interpretation of response time vs. onset asynchrony functions: Application to dual-task and precue-utilization paradigms. Journal of Mathematical Psychology, 45, 452–479.PubMedCrossRef
go back to reference Schwarz, W., & Ischebeck, A. (2003). On the relative-speed account of number-size interference effects in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29, 507–522.PubMedCrossRef Schwarz, W., & Ischebeck, A. (2003). On the relative-speed account of number-size interference effects in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29, 507–522.PubMedCrossRef
go back to reference Schwarz, W., & Keus, I. M. (2004). Moving along the mental number line: Comparing SNARC effects with saccadic and manual response. Perception & Psychophysics, 66, 651–664. Schwarz, W., & Keus, I. M. (2004). Moving along the mental number line: Comparing SNARC effects with saccadic and manual response. Perception & Psychophysics, 66, 651–664.
go back to reference Schwarz, W. & Müller, D. (2006). Spatial associations in number-related tasks: A comparison of manual and pedal responses. Experimental Psychology, 53, 4–15.PubMed Schwarz, W. & Müller, D. (2006). Spatial associations in number-related tasks: A comparison of manual and pedal responses. Experimental Psychology, 53, 4–15.PubMed
go back to reference Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a Stroop task. Journal of Mathematical Psychology, 18, 105–139.CrossRef Schweickert, R. (1978). A critical path generalization of the additive factor method: Analysis of a Stroop task. Journal of Mathematical Psychology, 18, 105–139.CrossRef
go back to reference Sigman, M., & Dehaene, S. (2005). Parsing a cognitive task: A characterization of the Mind’s bottleneck. PLoS Biology, 3, e37.PubMedCrossRef Sigman, M., & Dehaene, S. (2005). Parsing a cognitive task: A characterization of the Mind’s bottleneck. PLoS Biology, 3, e37.PubMedCrossRef
go back to reference Smith, M. C. (1969). The effect of varying information on the psychological refractory period. Acta Psychologica, 30, 220–231.CrossRef Smith, M. C. (1969). The effect of varying information on the psychological refractory period. Acta Psychologica, 30, 220–231.CrossRef
go back to reference Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. In: W. G. Kloster (Ed.), Attention and performance II (pp. 276–315). Amsterdam: North Holland. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. In: W. G. Kloster (Ed.), Attention and performance II (pp. 276–315). Amsterdam: North Holland.
go back to reference Telford, C. W. (1931). The refractory phase of voluntary and associative responses. Journal of Experimental Psychology, 14, 1–36.CrossRef Telford, C. W. (1931). The refractory phase of voluntary and associative responses. Journal of Experimental Psychology, 14, 1–36.CrossRef
go back to reference Tlauka, M. (2002). The processing of numbers in choice-reaction tasks. Australian Journal of Psychology, 54, 94–98.CrossRef Tlauka, M. (2002). The processing of numbers in choice-reaction tasks. Australian Journal of Psychology, 54, 94–98.CrossRef
go back to reference Tombu, M., & Jolicœr, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3–18.PubMedCrossRef Tombu, M., & Jolicœr, P. (2003). A central capacity sharing model of dual-task performance. Journal of Experimental Psychology: Human Perception and Performance, 29, 3–18.PubMedCrossRef
go back to reference Tombu, M., & Jolicœr, P. (2005). Testing the predictions of the central capacity sharing model. Journal of Experimental Psychology: Human Perception and Performance, 31, 790–820.PubMedCrossRef Tombu, M., & Jolicœr, P. (2005). Testing the predictions of the central capacity sharing model. Journal of Experimental Psychology: Human Perception and Performance, 31, 790–820.PubMedCrossRef
go back to reference Zorzi, M., Priftis, K., & Umiltà, C. (2002). Neglect disrupts the mental number line. Nature, 417, 138–139.PubMedCrossRef Zorzi, M., Priftis, K., & Umiltà, C. (2002). Neglect disrupts the mental number line. Nature, 417, 138–139.PubMedCrossRef
Metagegevens
Titel
Exploring the mental number line: evidence from a dual-task paradigm
Auteurs
Dana Müller
Wolf Schwarz
Publicatiedatum
01-09-2007
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 5/2007
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-006-0070-6

Andere artikelen Uitgave 5/2007

Psychological Research 5/2007 Naar de uitgave