Skip to main content
Top
Gepubliceerd in:

27-12-2023

Estimating anchor-based minimal important change using longitudinal confirmatory factor analysis

Auteurs: Berend Terluin, Andrew Trigg, Piper Fromy, Wouter Schuller, Caroline B. Terwee, Jakob B. Bjorner

Gepubliceerd in: Quality of Life Research | Uitgave 4/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

The minimal important change (MIC) is defined as the smallest within-individual change in a patient-reported outcome measure (PROM) that patients on average perceive as important. We describe a method to estimate this value based on longitudinal confirmatory factor analysis (LCFA). The method is evaluated and compared with a recently published method based on longitudinal item response theory (LIRT) in simulated and real data. We also examined the effect of sample size on bias and precision of the estimate.

Methods

We simulated 108 samples with various characteristics in which the true MIC was simulated as the mean of individual MICs, and estimated MICs based on LCFA and LIRT. Additionally, both MICs were estimated in existing PROMIS Pain Behavior data from 909 patients. In another set of 3888 simulated samples with sample sizes of 125, 250, 500, and 1000, we estimated LCFA-based MICs.

Results

The MIC was equally well recovered with the LCFA-method as using the LIRT-method, but the LCFA analyses were more than 50 times faster. In the Pain Behavior data (with higher scores indicating more pain behavior), an LCFA-based MIC for improvement was estimated to be 2.85 points (on a simple sum scale ranging 14–42), whereas the LIRT-based MIC was estimated to be 2.60. The sample size simulations showed that smaller sample sizes decreased the precision of the LCFA-based MIC and increased the risk of model non-convergence.

Conclusion

The MIC can accurately be estimated using LCFA, but sample sizes need to be preferably greater than 125.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
go back to reference FDA. (2019). Incorporating clinical outcome assessments into endpoints for regulatory decision-making. US Food and Drug Administration. FDA. (2019). Incorporating clinical outcome assessments into endpoints for regulatory decision-making. US Food and Drug Administration.
2.
go back to reference Jaeschke, R., Singer, J., & Guyatt, G. H. (1989). Measurement of health status. Ascertaining the minimal clinically important difference. Controlled Clinical Trials, 10, 407–415.CrossRefPubMed Jaeschke, R., Singer, J., & Guyatt, G. H. (1989). Measurement of health status. Ascertaining the minimal clinically important difference. Controlled Clinical Trials, 10, 407–415.CrossRefPubMed
3.
go back to reference Terwee, C. B., Peipert, J. D., Chapman, R., Lai, J. S., Terluin, B., Cella, D., Griffith, P., & Mokkink, L. B. (2021). Minimal important change (MIC): A conceptual clarification and systematic review of MIC estimates of PROMIS measures. Quality of Life Research, 30(10), 2729–2754.CrossRefPubMedPubMedCentral Terwee, C. B., Peipert, J. D., Chapman, R., Lai, J. S., Terluin, B., Cella, D., Griffith, P., & Mokkink, L. B. (2021). Minimal important change (MIC): A conceptual clarification and systematic review of MIC estimates of PROMIS measures. Quality of Life Research, 30(10), 2729–2754.CrossRefPubMedPubMedCentral
4.
go back to reference King, M. T. (2011). A point of minimal important difference (MID): A critique of terminology and methods. Expert Review of Pharmacoeconomics & Outcomes Research, 11, 171–184.CrossRef King, M. T. (2011). A point of minimal important difference (MID): A critique of terminology and methods. Expert Review of Pharmacoeconomics & Outcomes Research, 11, 171–184.CrossRef
5.
go back to reference Terluin, B., Eekhout, I., & Terwee, C. B. (2017). The anchor-based minimal important change, based on receiver operating characteristic analysis or predictive modeling, may need to be adjusted for the proportion of improved patients. Journal of Clinical Epidemiology, 83, 90–100.CrossRefPubMed Terluin, B., Eekhout, I., & Terwee, C. B. (2017). The anchor-based minimal important change, based on receiver operating characteristic analysis or predictive modeling, may need to be adjusted for the proportion of improved patients. Journal of Clinical Epidemiology, 83, 90–100.CrossRefPubMed
6.
go back to reference Vanier, A., Sebille, V., Blanchin, M., & Hardouin, J. B. (2021). The minimal perceived change: A formal model of the responder definition according to the patient’s meaning of change for patient-reported outcome data analysis and interpretation. BMC Medical Research Methodology, 21(1), 128.CrossRefPubMedPubMedCentral Vanier, A., Sebille, V., Blanchin, M., & Hardouin, J. B. (2021). The minimal perceived change: A formal model of the responder definition according to the patient’s meaning of change for patient-reported outcome data analysis and interpretation. BMC Medical Research Methodology, 21(1), 128.CrossRefPubMedPubMedCentral
7.
go back to reference Bjorner, J. B., Terluin, B., Trigg, A., Hu, J., Brady, K. J. S., & Griffiths, P. (2023). Establishing thresholds for meaningful within-individual change using longitudinal item response theory. Quality of Life Research, 32(5), 1267–1276.CrossRefPubMed Bjorner, J. B., Terluin, B., Trigg, A., Hu, J., Brady, K. J. S., & Griffiths, P. (2023). Establishing thresholds for meaningful within-individual change using longitudinal item response theory. Quality of Life Research, 32(5), 1267–1276.CrossRefPubMed
8.
go back to reference Takane, Y., & Deleeuw, J. (1987). On the relationship between item response theory and factor-analysis of discretized variables. Psychometrika, 52(3), 393–408.CrossRef Takane, Y., & Deleeuw, J. (1987). On the relationship between item response theory and factor-analysis of discretized variables. Psychometrika, 52(3), 393–408.CrossRef
10.
go back to reference Embretson, S. E., & Reise, S. P. (2009). Item response theory for psychologists (2nd ed.). Lawrence Erlbaum. Embretson, S. E., & Reise, S. P. (2009). Item response theory for psychologists (2nd ed.). Lawrence Erlbaum.
11.
go back to reference Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory. Structural Equation Modeling-a Multidisciplinary Journal, 15(1), 136–153.CrossRef Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory. Structural Equation Modeling-a Multidisciplinary Journal, 15(1), 136–153.CrossRef
12.
go back to reference Samejima, F. (1996). The graded response model. In W. J. van der Linden & R. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). Springer. Samejima, F. (1996). The graded response model. In W. J. van der Linden & R. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). Springer.
13.
go back to reference Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1–29.CrossRef Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1–29.CrossRef
14.
go back to reference Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 2.CrossRef Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 2.CrossRef
15.
go back to reference R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. R Core Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
16.
go back to reference Schuller, W., Terwee, C. B., Klausch, T., Roorda, L. D., Rohrich, D. C., Ostelo, R. W., Terluin, B., & de Vet, H. C. W. (2019). Psychometric properties of the Dutch-Flemish patient-reported outcomes measurement information system pain behavior item bank in patients with musculoskeletal complaints. The Journal of Pain, 20(11), 1328–1337.CrossRefPubMed Schuller, W., Terwee, C. B., Klausch, T., Roorda, L. D., Rohrich, D. C., Ostelo, R. W., Terluin, B., & de Vet, H. C. W. (2019). Psychometric properties of the Dutch-Flemish patient-reported outcomes measurement information system pain behavior item bank in patients with musculoskeletal complaints. The Journal of Pain, 20(11), 1328–1337.CrossRefPubMed
17.
go back to reference Crins, M. H. P., Roorda, L. D., Smits, N., de Vet, H. C. W., Westhovens, R., Cella, D., Cook, K. F., Revicki, D., van Leeuwen, J., Boers, M., Dekker, J., & Terwee, C. B. (2016). Calibration of the Dutch-Flemish PROMIS pain behavior item bank in patients with chronic pain. European Journal of Pain, 20(2), 284–296.CrossRefPubMed Crins, M. H. P., Roorda, L. D., Smits, N., de Vet, H. C. W., Westhovens, R., Cella, D., Cook, K. F., Revicki, D., van Leeuwen, J., Boers, M., Dekker, J., & Terwee, C. B. (2016). Calibration of the Dutch-Flemish PROMIS pain behavior item bank in patients with chronic pain. European Journal of Pain, 20(2), 284–296.CrossRefPubMed
18.
go back to reference Gasparini, A. (2018). rsimsum: Summarise results from Monte Carlo simulation studies. Journal of Open Source Software, 3(26), 739.CrossRef Gasparini, A. (2018). rsimsum: Summarise results from Monte Carlo simulation studies. Journal of Open Source Software, 3(26), 739.CrossRef
19.
go back to reference Terluin, B., Griffiths, P., Trigg, A., Terwee, C. B., & Bjorner, J. B. (2022). Present state bias in transition ratings was accurately estimated in simulated and real data. Journal of Clinical Epidemiology, 143, 128–136.CrossRefPubMed Terluin, B., Griffiths, P., Trigg, A., Terwee, C. B., & Bjorner, J. B. (2022). Present state bias in transition ratings was accurately estimated in simulated and real data. Journal of Clinical Epidemiology, 143, 128–136.CrossRefPubMed
20.
go back to reference Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11), 2074–2102.CrossRefPubMedPubMedCentral Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11), 2074–2102.CrossRefPubMedPubMedCentral
21.
go back to reference Deyo, R. A., & Centor, R. M. (1986). Assessing the responsiveness of functional scales to clinical change: An analogy to diagnostic test performance. J Chron Dis, 39, 897–906.CrossRefPubMed Deyo, R. A., & Centor, R. M. (1986). Assessing the responsiveness of functional scales to clinical change: An analogy to diagnostic test performance. J Chron Dis, 39, 897–906.CrossRefPubMed
22.
go back to reference Terluin, B., Eekhout, I., Terwee, C. B., & de Vet, H. C. W. (2015). Minimal important change (MIC) based on a predictive modeling approach was more precise than MIC based on ROC analysis. Journal of Clinical Epidemiology, 68, 1388–1396.CrossRefPubMed Terluin, B., Eekhout, I., Terwee, C. B., & de Vet, H. C. W. (2015). Minimal important change (MIC) based on a predictive modeling approach was more precise than MIC based on ROC analysis. Journal of Clinical Epidemiology, 68, 1388–1396.CrossRefPubMed
23.
go back to reference Terluin, B., Eekhout, I., & Terwee, C. B. (2022). Improved adjusted minimal important change took reliability of transition ratings into account. Journal of Clinical Epidemiology, 148, 48–53.CrossRefPubMed Terluin, B., Eekhout, I., & Terwee, C. B. (2022). Improved adjusted minimal important change took reliability of transition ratings into account. Journal of Clinical Epidemiology, 148, 48–53.CrossRefPubMed
24.
go back to reference Hays, R. D., Brodsky, M., Johnston, M. F., Spritzer, K. L., & Hui, K. K. (2005). Evaluating the statistical significance of health-related quality-of-life change in individual patients. Evaluation and the Health Professions, 28(2), 160–171.CrossRefPubMed Hays, R. D., Brodsky, M., Johnston, M. F., Spritzer, K. L., & Hui, K. K. (2005). Evaluating the statistical significance of health-related quality-of-life change in individual patients. Evaluation and the Health Professions, 28(2), 160–171.CrossRefPubMed
26.
go back to reference Terluin, B., Koopman, J. E., Hoogendam, L., Griffiths, P., Terwee, C. B., & Bjorner, J. B. (2023). Estimating meaningful thresholds for multi-item questionnaires using item response theory. Quality of Life Research, 32(6), 1819–1830.CrossRefPubMedPubMedCentral Terluin, B., Koopman, J. E., Hoogendam, L., Griffiths, P., Terwee, C. B., & Bjorner, J. B. (2023). Estimating meaningful thresholds for multi-item questionnaires using item response theory. Quality of Life Research, 32(6), 1819–1830.CrossRefPubMedPubMedCentral
Metagegevens
Titel
Estimating anchor-based minimal important change using longitudinal confirmatory factor analysis
Auteurs
Berend Terluin
Andrew Trigg
Piper Fromy
Wouter Schuller
Caroline B. Terwee
Jakob B. Bjorner
Publicatiedatum
27-12-2023
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 4/2024
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-023-03577-w

Andere artikelen Uitgave 4/2024

Quality of Life Research 4/2024 Naar de uitgave