Skip to main content
Top
Gepubliceerd in:

27-12-2023

Estimating anchor-based minimal important change using longitudinal confirmatory factor analysis

Auteurs: Berend Terluin, Andrew Trigg, Piper Fromy, Wouter Schuller, Caroline B. Terwee, Jakob B. Bjorner

Gepubliceerd in: Quality of Life Research | Uitgave 4/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

The minimal important change (MIC) is defined as the smallest within-individual change in a patient-reported outcome measure (PROM) that patients on average perceive as important. We describe a method to estimate this value based on longitudinal confirmatory factor analysis (LCFA). The method is evaluated and compared with a recently published method based on longitudinal item response theory (LIRT) in simulated and real data. We also examined the effect of sample size on bias and precision of the estimate.

Methods

We simulated 108 samples with various characteristics in which the true MIC was simulated as the mean of individual MICs, and estimated MICs based on LCFA and LIRT. Additionally, both MICs were estimated in existing PROMIS Pain Behavior data from 909 patients. In another set of 3888 simulated samples with sample sizes of 125, 250, 500, and 1000, we estimated LCFA-based MICs.

Results

The MIC was equally well recovered with the LCFA-method as using the LIRT-method, but the LCFA analyses were more than 50 times faster. In the Pain Behavior data (with higher scores indicating more pain behavior), an LCFA-based MIC for improvement was estimated to be 2.85 points (on a simple sum scale ranging 14–42), whereas the LIRT-based MIC was estimated to be 2.60. The sample size simulations showed that smaller sample sizes decreased the precision of the LCFA-based MIC and increased the risk of model non-convergence.

Conclusion

The MIC can accurately be estimated using LCFA, but sample sizes need to be preferably greater than 125.
Bijlagen
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Literatuur
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Metagegevens
Titel
Estimating anchor-based minimal important change using longitudinal confirmatory factor analysis
Auteurs
Berend Terluin
Andrew Trigg
Piper Fromy
Wouter Schuller
Caroline B. Terwee
Jakob B. Bjorner
Publicatiedatum
27-12-2023
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 4/2024
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-023-03577-w