Skip to main content
Top
Gepubliceerd in:

Open Access 27-10-2020 | Review Article

Complications of chronic total occlusion percutaneous coronary intervention

Auteurs: J. Karacsonyi, E. Vemmou, I. D. Nikolakopoulos, I. Ungi, B. V. Rangan, E. S. Brilakis

Gepubliceerd in: Netherlands Heart Journal | Uitgave 1/2021

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Abstract

Chronic total occlusion percutaneous coronary interventions can be highly complex and are associated with an increased risk of complications, such as perforation, acute vessel closure (which can lead to rapid haemodynamic compromise if it involves the donor vessel), and equipment loss or entrapment. Awareness of the potential complications and meticulous attention to equipment position and patient monitoring can help minimise the risk of complications and allow prompt treatment should they occur.

Introduction

Despite its clinical benefits [1, 2] chronic total occlusion (CTO) percutaneous coronary intervention (PCI) is associated with higher complication rates than PCI of non-occlusive lesions [3]. CTO PCI complications include death, acute myocardial infarction, stroke, the need for repeat PCI, emergency coronary artery bypass graft surgery, tamponade requiring pericardiocentesis or surgery, acute vessel closure (which can be a catastrophic complication if it involves the CTO donor vessel), coronary dissection, aorto-ostial dissection, thrombus, embolisation of thrombus, plaque or air, side branch occlusion, spasm, pseudolesion formation, intramural haematoma, perforation, equipment entrapment/loss, hypotension, arrhythmias, vascular access complications and bleeding, contrast-induced acute kidney injury, and radiation skin injury [4]. The complications of CTO PCI can be classified as acute and long-term based on timing. CTO PCI complications can also be classified according to location into cardiac and non-cardiac complications. Cardiac complications can be further divided into coronary and non-coronary (Tab. 1). Each complication has a different mechanism and underlying causes. A score has been developed for estimating the risk of periprocedural complications using the following three parameters: patient age >65 years, +3 points; lesion length ≥23 mm, +2 points; and use of the retrograde approach, +1 point [5].
Table 1
Types of complications during chronic total occlusion (CTO) percutaneous coronary interventions (PCI)
Acute complications of CTO PCI
Cardiac complications
Non-cardiac complications
Coronary complications
Acute vessel closure
– Vascular access complication
– Donor vessel injury
– Contrast-related nephropathy
– Occlusion of collaterals
– Allergies
– (Aorto)coronary dissection
– Radiation skin injury
– Dissection of distal vessel
– Thromboembolic complications
– Side branch occlusion
– Stroke
– Thrombus
 
– Spasm
 
– Pseudolesion formation
 
– Subintimal stent deployment
 
– Embolisation:  thrombus, – plaque, – air
 
Perforation:
 
– Large vessel
 
– Collateral
 
– Distal vessel
 
Equipment entrapment/loss
 
Non-coronary complications
 
– Hypotension
 
– Myocardial infarction
 
– Arrythmias
 
– Death
 
– Intramural haematoma
 
– Tamponade
 

Donor vessel injury

Donor vessel injury requires immediate identification and management, as it can lead to extensive ischaemia and haemodynamic decompensation [6]. In a meta-analysis of retrograde CTO PCIs, donor vessel dissection occurred in 2% of treated CTOs (95% confidence interval: 0.9–4.5%) [7].
Donor vessel injury may be due to dissection caused by deep catheter engagement, for example during equipment withdrawal or during wire externalisation when the operator pulls the retrograde wire forcefully (Fig. 1). Flow in the donor vessel can also be compromised due to catheter or vessel thrombosis, which may be due to long procedures with decreasing activated clotting time (ACT), blood stasis, especially in diseased donor vessel and failure to regularly clear the guide catheter, particularly after trapping [6].
To prevent this complication paying close attention to the position of the guide catheters and to the pressure waveforms is essential, especially during externalisation. Side-hole guide catheters should not be used in the donor vessel, as they can mask pressure dampening which can lead to ischaemia. The ACT should be kept above 300 s (for antegrade procedures) and 350 s (for retrograde procedures), checking it every 20–30 min throughout the procedure. Moreover, retrograde CTO PCI should not be performed through significantly diseased donor vessels to minimise the risk of ischaemia: donor vessel lesions should be treated first prior to advancing microcatheters and attempting retrograde crossing. A ‘safety’ guidewire should be placed in the donor vessel to facilitate treatment should donor vessel occlusion occur [6].
Donor vessel injury should in most cases lead to discontinuation of the CTO PCI attempts, focusing all efforts on restoring the patency of the donor vessel. Haemodynamic support may be required in the case of haemodynamic compromise. Dissections are treated with stenting, ideally over the safety guidewire after removal of the externalised guidewire. Thrombotic occlusion is treated by thrombectomy and possibly the administration of intravenous antiplatelet medications [6].

Perforation

Coronary perforation is one of the most feared complications of CTO PCI [8]. In a recently published analysis of 1811 cases from five European centres it occurred in 5.5% of the CTO PCIs, with more than half of these cases requiring management and 20% resulting in tamponade. The following characteristics were found to be independently associated with coronary perforation: older age, occlusion length >20 mm, rotational atherectomy, antegrade dissection/re-entry, and use of the retrograde approach [9]. In another multicentre US registry analysing 2097 CTO PCIs performed in 2049 patients, the incidence of perforation was 4.1%, with 14% of the patients developing tamponade requiring pericardiocentesis. In this study, age, previous PCI, right coronary artery target CTO, blunt or no stump, use of antegrade dissection re-entry, and the retrograde approach were associated with perforation [10]. The retrograde approach has been associated with a higher risk of perforation, although in recent analyses many of the perforations observed during retrograde CTO PCI were due to antegrade crossing attempts [11, 12].
Coronary artery perforations have traditionally been classified based on severity (Ellis classification). Class 1: a crater extending outside the lumen only in the absence of linear staining angiographically suggestive of dissection. Class 2: Pericardial or myocardial blush without a larger than 1 mm exit hole. Class 3: Frank streaming of contrast through a ≥ 1-mm exit hole. Class 3‑cavity spilling: Perforation into an anatomic cavity chamber, such as the coronary sinus, the right ventricle, etc. [13]. The location of the perforation is also critically important, as it has important implications regarding management [6]. There are three main perforation locations: (a) large vessel perforation, (b) distal vessel perforation, and (c) collateral vessel perforation, in either a septal or an epicardial collateral (Fig. 2; [1416]). Large vessel perforations are more common than distal vessel perforations [17].
The risk of perforation can be minimised by meticulous attention to equipment during CTO crossing attempts. Guidewire position within the vessel ‘architecture’ should be confirmed before advancing microcatheters and other equipment. Coronary perforation may lead to cardiac tamponade, myocardial infarction, rapid haemodynamic collapse, and death [18]. The first step in managing a perforation is to inflate a balloon proximal to or at the perforation to stop bleeding into the pericardium (Fig. 3). Large vessel perforations are usually treated with covered stent implantation, although dissection/re-entry techniques have also been successfully used in some cases [19]. Distal vessel perforations are treated with embolisation, usually with fat or coils. Covered stents and/or coils can often be delivered through a single guide catheter, especially if 8‑French guides are used [20]. Alternatively the dual guide catheter technique can be employed with one guide catheter used for delivering a balloon to achieve haemostasis and the second guide catheter for covered stent delivery. Availability of 0.014-inch coils can facilitate delivery through standard microcatheters, as larger 0.018-inch coils require larger microcatheters [such as the Progreat (Terumo, Tokyo, Japan) or Renegade (Boston Scientific, Marlborough, MA, USA)] or use of the Finecross microcatheter (Terumo). Storage of perforation management equipment (covered stents, coils, pericardiocentesis kit) in a CTO or complex PCI cart can expedite treatment [21].

Side branch occlusion

Occlusion of the side branches can develop, especially when subintimal dissection/re-entry strategies are applied in CTO PCI, and has been associated with a higher risk of post-PCI myocardial infarction [22, 23]. Extensive dissection/re-entry strategies, such as the subintimal tracking and re-entry (STAR) technique, are associated with high rates of restenosis and reocclusion likely due to side branch occlusion and decreased outflow [24]. The extent of dissection should, therefore, be limited [23, 25]. Moreover, side branch wiring before stenting can help prevent occlusion and can be facilitated by use of dual lumen microcatheters, such as the Twin Pass (Teleflex, Wayne, PA, USA), Crusade (Kaneka, Tokyo, Japan), NHancer Rx (IMDS, Roden, The Netherlands) or Sasuke (Asahi Intecc Co., Seto, Japan). In some cases a retrograde crossing strategy can be applied to preserve side branches [6, 26]. Intravascular imaging, particularly intravascular ultrasound, can help to determine the mechanism of side branch loss and also facilitate re-opening [6].

Equipment loss or entrapment

This complication is rare but potentially could be life-threatening depending on the device and location of the entrapment or loss. Stents are the most commonly embolised devices with an estimated incidence of 0.32% [27]. Equipment delivery can be challenging during CTO PCI, especially through tortuosity and calcification [28]. Retrograde equipment delivery should be avoided [29] as well as excessive guidewire and microcatheter rotation and aggressive Rotablator burr advancement [30, 31]. Use of smaller burrs, advancement of the burr using a pecking motion and avoidance of sudden decelerations is advised [32]. Before attempting stent delivery the target lesion should be carefully prepared with balloon angioplasty and atherectomy if necessary. Checking the transmission of torque to the guidewire tip, and alternating clockwise and counter-clockwise microcatheter rotation, can help minimise the risk of equipment loss/entrapment.
Should equipment loss or entrapment occur, the first decision is whether to attempt retrieval or deploy/crush the equipment against the vessel wall. For stent loss in coronary segments that are unlikely to be significantly affected by the stenting, deployment is often the preferred strategy, as stent retrieval attempts may result in distal stent embolisation or target vessel injury [27]. If crushing is the best option intravascular imaging should be performed to ensure an optimal PCI result [6]. If retrieval is attempted, various snares, most commonly three-loop snares, are most often used.

Conclusions

CTO PCI can lead to potentially life-threatening complications. Awareness of such complications, meticulous using techniques to minimise risk, using and prompt recognition and treatment can optimise CTO PCI outcomes.

Conflict of interest

J. Karacsonyi, E. Vemmou, I.D. Nikolakopoulos, I. Ungi and B.V. Rangan declare that they have no competing interests. E. S. Brilakis has received consulting/speaker honoraria from Abbott Vascular, the American Heart Association (associate editor of Circulation), Amgen, Biotronik, Boston Scientific, the Cardiovascular Innovations Foundation (Board of Directors), ControlRad, CSI, Ebix, Elsevier, GE Healthcare, InfraRedx, Medtronic, Siemens, and Teleflex, as well as research support from Regeneron and Siemens. He is a shareholder of MHI Ventures.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

Netherlands Heart Journal

Het Netherlands Heart Journal wordt uitgegeven in samenwerking met de Nederlandse Vereniging voor Cardiologie. Het tijdschrift is Engelstalig en wordt gratis beschikbaa ...

Literatuur
1.
go back to reference Garcia S, Abdullah S, Banerjee S, Brilakis ES. Chronic total occlusions: patient selection and overview of advanced techniques. Curr Cardiol Rep. 2013;15:334.CrossRef Garcia S, Abdullah S, Banerjee S, Brilakis ES. Chronic total occlusions: patient selection and overview of advanced techniques. Curr Cardiol Rep. 2013;15:334.CrossRef
2.
go back to reference Safley DM, Grantham JA, Hatch J, Jones PG, Spertus JA. Quality of life benefits of percutaneous coronary intervention for chronic occlusions. Catheter Cardiovasc Interv. 2014;84:629–34.CrossRef Safley DM, Grantham JA, Hatch J, Jones PG, Spertus JA. Quality of life benefits of percutaneous coronary intervention for chronic occlusions. Catheter Cardiovasc Interv. 2014;84:629–34.CrossRef
3.
go back to reference Brilakis ES, Banerjee S, Karmpaliotis D, Lombardi WL, Tsai TT, Shunk KA, et al. Procedural outcomes of chronic total occlusion percutaneous coronary intervention: a report from the NCDR (national cardiovascular data registry). JACC Cardiovasc Interv. 2015;8:245–53.CrossRef Brilakis ES, Banerjee S, Karmpaliotis D, Lombardi WL, Tsai TT, Shunk KA, et al. Procedural outcomes of chronic total occlusion percutaneous coronary intervention: a report from the NCDR (national cardiovascular data registry). JACC Cardiovasc Interv. 2015;8:245–53.CrossRef
4.
go back to reference Rigger J, Hanratty CG, Walsh SJ. Erratum to: common and uncommon CTO complications. Interv Cardiol. 2019;14:48.CrossRef Rigger J, Hanratty CG, Walsh SJ. Erratum to: common and uncommon CTO complications. Interv Cardiol. 2019;14:48.CrossRef
5.
go back to reference Danek BA, Karatasakis A, Karmpaliotis D, Alaswad K, Yeh RW, Jaffer FA, et al. Development and validation of a scoring system for predicting periprocedural complications during percutaneous coronary interventions of chronic total occlusions: the prospective global registry for the study of chronic total occlusion intervention (PROGRESS CTO) complications score. J Am Heart Assoc. 2016;5:e4272. https://doi.org/10.1161/JAHA.116.004272.CrossRef Danek BA, Karatasakis A, Karmpaliotis D, Alaswad K, Yeh RW, Jaffer FA, et al. Development and validation of a scoring system for predicting periprocedural complications during percutaneous coronary interventions of chronic total occlusions: the prospective global registry for the study of chronic total occlusion intervention (PROGRESS CTO) complications score. J Am Heart Assoc. 2016;5:e4272. https://​doi.​org/​10.​1161/​JAHA.​116.​004272.CrossRef
6.
go back to reference Brilakis ES. Manual of chronic total occlusion interventions, a step-by-step approach. 2nd ed. London: Elsevier; 2018. Brilakis ES. Manual of chronic total occlusion interventions, a step-by-step approach. 2nd ed. London: Elsevier; 2018.
7.
go back to reference El Sabbagh A, Patel VG, Jeroudi OM, Michael TT, Alomar ME, Mogabgab O, et al. Angiographic success and procedural complications in patients undergoing retrograde percutaneous coronary chronic total occlusion interventions: a weighted meta-analysis of 3,482 patients from 26 studies. Int J Cardiol. 2014;174:243–8.CrossRef El Sabbagh A, Patel VG, Jeroudi OM, Michael TT, Alomar ME, Mogabgab O, et al. Angiographic success and procedural complications in patients undergoing retrograde percutaneous coronary chronic total occlusion interventions: a weighted meta-analysis of 3,482 patients from 26 studies. Int J Cardiol. 2014;174:243–8.CrossRef
8.
go back to reference Patel SM, Menon RV, Burke MN, Jaffer FA, Yeh RW, Vo M, et al. Current perspectives and practices on chronic total occlusion percutaneous coronary interventions. J Invasive Cardiol. 2018;30:43–50.PubMed Patel SM, Menon RV, Burke MN, Jaffer FA, Yeh RW, Vo M, et al. Current perspectives and practices on chronic total occlusion percutaneous coronary interventions. J Invasive Cardiol. 2018;30:43–50.PubMed
9.
go back to reference Azzalini L, Poletti E, Ayoub M, Ojeda S, Zivelonghi C, La Manna A, et al. Coronary artery perforation during chronic total occlusion percutaneous coronary intervention: epidemiology, mechanisms, management, and outcomes. EuroIntervention. 2019;15:e804–e11.CrossRef Azzalini L, Poletti E, Ayoub M, Ojeda S, Zivelonghi C, La Manna A, et al. Coronary artery perforation during chronic total occlusion percutaneous coronary intervention: epidemiology, mechanisms, management, and outcomes. EuroIntervention. 2019;15:e804–e11.CrossRef
10.
go back to reference Danek BA, Karatasakis A, Tajti P, Sandoval Y, Karmpaliotis D, Alaswad K, et al. Incidence, treatment, and outcomes of coronary perforation during chronic total occlusion percutaneous coronary intervention. Am J Cardiol. 2017;120:1285–92.CrossRef Danek BA, Karatasakis A, Tajti P, Sandoval Y, Karmpaliotis D, Alaswad K, et al. Incidence, treatment, and outcomes of coronary perforation during chronic total occlusion percutaneous coronary intervention. Am J Cardiol. 2017;120:1285–92.CrossRef
11.
go back to reference Hirai T, Nicholson WJ, Sapontis J, Salisbury AC, Marso SP, Lombardi W, et al. A detailed analysis of perforations during chronic total occlusion angioplasty. JACC Cardiovasc Interv. 2019;12:1902–12.CrossRef Hirai T, Nicholson WJ, Sapontis J, Salisbury AC, Marso SP, Lombardi W, et al. A detailed analysis of perforations during chronic total occlusion angioplasty. JACC Cardiovasc Interv. 2019;12:1902–12.CrossRef
12.
go back to reference Tajti P, Xenogiannis I, Gargoulas F, Karmpaliotis D, Alaswad K, Jaffer FA, et al. Contemporary outcomes of the retrograde approach to chronic total occlusion interventions: insights from an international CTO registry. EuroIntervention. 2019; https://doi.org/10.4244/EIJ-D-19-00441.CrossRef Tajti P, Xenogiannis I, Gargoulas F, Karmpaliotis D, Alaswad K, Jaffer FA, et al. Contemporary outcomes of the retrograde approach to chronic total occlusion interventions: insights from an international CTO registry. EuroIntervention. 2019; https://​doi.​org/​10.​4244/​EIJ-D-19-00441.CrossRef
13.
go back to reference Ellis SG, Ajluni S, Arnold AZ, Popma JJ, Bittl JA, Eigler NL, et al. Increased coronary perforation in the new device era. Incidence, classification, management, and outcome. Circulation. 1994;90:2725–30.CrossRef Ellis SG, Ajluni S, Arnold AZ, Popma JJ, Bittl JA, Eigler NL, et al. Increased coronary perforation in the new device era. Incidence, classification, management, and outcome. Circulation. 1994;90:2725–30.CrossRef
14.
go back to reference Brilakis ES, Karmpaliotis D, Patel V, Banerjee S. Complications of chronic total occlusion angioplasty. Interv Cardiol Clin. 2012;1:373–89. Brilakis ES, Karmpaliotis D, Patel V, Banerjee S. Complications of chronic total occlusion angioplasty. Interv Cardiol Clin. 2012;1:373–89.
15.
go back to reference Xenogiannis I, Brilakis ES. Advances in the treatment of coronary perforations. Catheter Cardiovasc Interv. 2019;93:921–2.CrossRef Xenogiannis I, Brilakis ES. Advances in the treatment of coronary perforations. Catheter Cardiovasc Interv. 2019;93:921–2.CrossRef
16.
go back to reference Tajti P, Xenogiannis I, Chavez I, Gossl M, Mooney M, Poulose A, et al. Expecting the unexpected: preventing and managing the consequences of coronary perforations. Expert Rev Cardiovasc Ther. 2018;16:805–14.CrossRef Tajti P, Xenogiannis I, Chavez I, Gossl M, Mooney M, Poulose A, et al. Expecting the unexpected: preventing and managing the consequences of coronary perforations. Expert Rev Cardiovasc Ther. 2018;16:805–14.CrossRef
17.
go back to reference Shaukat A, Tajti P, Sandoval Y, Stanberry L, Garberich R, Burke MN, et al. Incidence, predictors, management and outcomes of coronary perforations. Catheter Cardiovasc Interv. 2019;93:48–56.CrossRef Shaukat A, Tajti P, Sandoval Y, Stanberry L, Garberich R, Burke MN, et al. Incidence, predictors, management and outcomes of coronary perforations. Catheter Cardiovasc Interv. 2019;93:48–56.CrossRef
18.
go back to reference Giannini F, Candilio L, Mitomo S, Ruparelia N, Chieffo A, Baldetti L, et al. A Practical approach to the management of complications during percutaneous coronary intervention. JACC Cardiovasc Interv. 2018;11:1797–810.CrossRef Giannini F, Candilio L, Mitomo S, Ruparelia N, Chieffo A, Baldetti L, et al. A Practical approach to the management of complications during percutaneous coronary intervention. JACC Cardiovasc Interv. 2018;11:1797–810.CrossRef
19.
go back to reference Xenogiannis I, Tajti P, Burke MN, Brilakis ES. An alternative treatment strategy for large vessel coronary perforations. Catheter Cardiovasc Interv. 2019;93:635–8.CrossRef Xenogiannis I, Tajti P, Burke MN, Brilakis ES. An alternative treatment strategy for large vessel coronary perforations. Catheter Cardiovasc Interv. 2019;93:635–8.CrossRef
20.
go back to reference Sandoval Y, Lobo AS, Brilakis ES. Covered stent implantation through a single 8‑french guide catheter for the management of a distal coronary perforation. Catheter Cardiovasc Interv. 2017;90:584–8.CrossRef Sandoval Y, Lobo AS, Brilakis ES. Covered stent implantation through a single 8‑french guide catheter for the management of a distal coronary perforation. Catheter Cardiovasc Interv. 2017;90:584–8.CrossRef
21.
go back to reference Brilakis ES, Mashayekhi K, Tsuchikane E, Rafeh NA, Alaswad K, Araya M, et al. Guiding principles for chronic total occlusion percutaneous coronary intervention. Circulation. 2019;140:420–33.CrossRef Brilakis ES, Mashayekhi K, Tsuchikane E, Rafeh NA, Alaswad K, Araya M, et al. Guiding principles for chronic total occlusion percutaneous coronary intervention. Circulation. 2019;140:420–33.CrossRef
22.
go back to reference Michael TT, Papayannis AC, Banerjee S, Brilakis ES. Subintimal dissection/reentry strategies in coronary chronic total occlusion interventions. Circ Cardiovasc Interv. 2012;5:729–38.CrossRef Michael TT, Papayannis AC, Banerjee S, Brilakis ES. Subintimal dissection/reentry strategies in coronary chronic total occlusion interventions. Circ Cardiovasc Interv. 2012;5:729–38.CrossRef
23.
go back to reference Nguyen-Trong PK, Rangan BV, Karatasakis A, Danek BA, Christakopoulos GE, Martinez-Parachini JR, et al. Predictors and outcomes of side-branch occlusion in coronary chronic total occlusion interventions. J Invasive Cardiol. 2016;28:168–73.PubMed Nguyen-Trong PK, Rangan BV, Karatasakis A, Danek BA, Christakopoulos GE, Martinez-Parachini JR, et al. Predictors and outcomes of side-branch occlusion in coronary chronic total occlusion interventions. J Invasive Cardiol. 2016;28:168–73.PubMed
24.
go back to reference Rinfret S, Ribeiro HB, Nguyen CM, Nombela-Franco L, Urena M, Rodes-Cabau J. Dissection and re-entry techniques and longer-term outcomes following successful percutaneous coronary intervention of chronic total occlusion. Am J Cardiol. 2014;114:1354–60.CrossRef Rinfret S, Ribeiro HB, Nguyen CM, Nombela-Franco L, Urena M, Rodes-Cabau J. Dissection and re-entry techniques and longer-term outcomes following successful percutaneous coronary intervention of chronic total occlusion. Am J Cardiol. 2014;114:1354–60.CrossRef
25.
go back to reference Wosik J, Shorrock D, Christopoulos G, Kotsia A, Rangan BV, Roesle M, et al. Systematic review of the bridgepoint system for crossing coronary and peripheral chronic total occlusions. J Invasive Cardiol. 2015;27:269–76.PubMed Wosik J, Shorrock D, Christopoulos G, Kotsia A, Rangan BV, Roesle M, et al. Systematic review of the bridgepoint system for crossing coronary and peripheral chronic total occlusions. J Invasive Cardiol. 2015;27:269–76.PubMed
26.
go back to reference Kotsia A, Christopoulos G, Brilakis ES. Use of the retrograde approach for preserving the distal bifurcation after antegrade crossing of a right coronary artery chronic total occlusion. J Invasive Cardiol. 2014;26:E48–9.PubMed Kotsia A, Christopoulos G, Brilakis ES. Use of the retrograde approach for preserving the distal bifurcation after antegrade crossing of a right coronary artery chronic total occlusion. J Invasive Cardiol. 2014;26:E48–9.PubMed
27.
go back to reference Brilakis ES, Best PJ, Elesber AA, Barsness GW, Lennon RJ, Holmes DR Jr., et al. Incidence, retrieval methods, and outcomes of stent loss during percutaneous coronary intervention: a large single-center experience. Catheter Cardiovasc Interv. 2005;66:333–40.CrossRef Brilakis ES, Best PJ, Elesber AA, Barsness GW, Lennon RJ, Holmes DR Jr., et al. Incidence, retrieval methods, and outcomes of stent loss during percutaneous coronary intervention: a large single-center experience. Catheter Cardiovasc Interv. 2005;66:333–40.CrossRef
28.
go back to reference Iturbe JM, Abdel-Karim AR, Papayannis A, Mahmood A, Rangan BV, Banerjee S, et al. Frequency, treatment, and consequences of device loss and entrapment in contemporary percutaneous coronary interventions. J Invasive Cardiol. 2012;24:215–21.PubMed Iturbe JM, Abdel-Karim AR, Papayannis A, Mahmood A, Rangan BV, Banerjee S, et al. Frequency, treatment, and consequences of device loss and entrapment in contemporary percutaneous coronary interventions. J Invasive Cardiol. 2012;24:215–21.PubMed
29.
go back to reference Sianos G, Papafaklis MI. Septal wire entrapment during recanalisation of a chronic total occlusion with the retrograde approach. Hellenic J Cardiol. 2011;52:79–83.PubMed Sianos G, Papafaklis MI. Septal wire entrapment during recanalisation of a chronic total occlusion with the retrograde approach. Hellenic J Cardiol. 2011;52:79–83.PubMed
30.
go back to reference Grise MA, Yeager MJ, Teirstein PS. A case of an entrapped rotational atherectomy burr. Catheter Cardiovasc Interv. 2002;57:31–3.CrossRef Grise MA, Yeager MJ, Teirstein PS. A case of an entrapped rotational atherectomy burr. Catheter Cardiovasc Interv. 2002;57:31–3.CrossRef
31.
go back to reference Sulimov DS, Abdel-Wahab M, Toelg R, Kassner G, Geist V, Richardt G. Stuck rotablator: the nightmare of rotational atherectomy. EuroIntervention. 2013;9:251–8.CrossRef Sulimov DS, Abdel-Wahab M, Toelg R, Kassner G, Geist V, Richardt G. Stuck rotablator: the nightmare of rotational atherectomy. EuroIntervention. 2013;9:251–8.CrossRef
32.
go back to reference Gupta T, Weinreich M, Greenberg M, Colombo A, Latib A. Rotational atherectomy: a contemporary appraisal. Interv Cardiol. 2019;14:182–9.CrossRef Gupta T, Weinreich M, Greenberg M, Colombo A, Latib A. Rotational atherectomy: a contemporary appraisal. Interv Cardiol. 2019;14:182–9.CrossRef
33.
go back to reference Brilakis ES. Manual of percutaneous coronary interventions: a step by step approach. 1st ed. London: Elsevier; 2020. Brilakis ES. Manual of percutaneous coronary interventions: a step by step approach. 1st ed. London: Elsevier; 2020.
Metagegevens
Titel
Complications of chronic total occlusion percutaneous coronary intervention
Auteurs
J. Karacsonyi
E. Vemmou
I. D. Nikolakopoulos
I. Ungi
B. V. Rangan
E. S. Brilakis
Publicatiedatum
27-10-2020
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Netherlands Heart Journal / Uitgave 1/2021
Print ISSN: 1568-5888
Elektronisch ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-020-01502-1