Skip to main content
Top

2013 | OriginalPaper | Hoofdstuk

45. Cardiovascular Cell Therapy

Auteurs : Annarosa Leri, MD, Jan Kajstura, PhD, Marcello Rota, PhD, Piero Anversa, MD

Gepubliceerd in: Essential Cardiology

Uitgeverij: Springer New York

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The concept of the heart as a terminally differentiated organ incapable of replacing damaged myocytes has been at the center of cardiovascular research and therapeutic development for the last 50 years. The progressive decline in myocyte number as a function of age and the formation of scarred tissue following myocardial infarction have been interpreted as irrefutable proofs of the postmitotic characteristic of the heart. Emerging evidence supports a more dynamic view of the heart, in which cell death and renewal are vital components of the remodeling process that governs cardiac homeostasis, aging, and disease. In a recent study, myocyte regeneration in the physiologically aging heart was found to occur at previously unexpected levels. From 20 to 100 years of age, the myocyte compartment is replaced completely 15 times in women and 11 times in men, and essentially none of the myocytes present at birth is preserved in the young adult, middle-aged, and senescent heart. The identification of dividing myocytes raises the important question concerning the origin of the newly formed cells. In vitro and in vivo findings strongly suggest that replicating myocytes correspond to transit-amplifying cells derived from the lineage determination of primitive cells, supporting the notion that cardiomyogenesis is controlled by activation and differentiation of stem cells. Investigators in several laboratories concur with the notion that the myocardium is an organ permissive for tissue regeneration mediated by exogenous and/or endogenous progenitors. In this chapter, we will focus on the cell classes that are currently employed in clinical studies for the treatment of cardiac diseases.
Literatuur
1.
go back to reference Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109:941–61.PubMedCrossRef Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109:941–61.PubMedCrossRef
2.
go back to reference Rubart M, Field LJ. Cardiac regeneration: repopulating the heart. Annu Rev Physiol. 2006;68:29–49.PubMedCrossRef Rubart M, Field LJ. Cardiac regeneration: repopulating the heart. Annu Rev Physiol. 2006;68:29–49.PubMedCrossRef
3.
go back to reference Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev. 2005;85:1373–416.PubMedCrossRef Leri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev. 2005;85:1373–416.PubMedCrossRef
4.
go back to reference Urbanek K, Torella D, Sheikh F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005;102:8692–7.PubMedCrossRef Urbanek K, Torella D, Sheikh F, et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci USA. 2005;102:8692–7.PubMedCrossRef
5.
go back to reference Hsu YC, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell. 2011;144:92–105.PubMedCrossRef Hsu YC, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell. 2011;144:92–105.PubMedCrossRef
6.
go back to reference Verfaillie CM. “Adult” stem cells: tissue specific or not? In: Lanza R, Blau H, Melton D, Moore M, Thomas ED, Verfaille C, Weissman I, West M, editors. Handbook of stem cells. New York: Elsevier Academic Press; 2004. p. 13–20.CrossRef Verfaillie CM. “Adult” stem cells: tissue specific or not? In: Lanza R, Blau H, Melton D, Moore M, Thomas ED, Verfaille C, Weissman I, West M, editors. Handbook of stem cells. New York: Elsevier Academic Press; 2004. p. 13–20.CrossRef
7.
go back to reference Maier B, Gluba W, Bernier B, et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004;18:306–19.PubMedCrossRef Maier B, Gluba W, Bernier B, et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004;18:306–19.PubMedCrossRef
8.
go back to reference Soonpaa MH, Kim KK, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271:H2183–9.PubMed Soonpaa MH, Kim KK, Pajak L, et al. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271:H2183–9.PubMed
9.
go back to reference Trivedi CM, Lu MM, Wang Q, et al. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem. 2008;283:26484–9.PubMedCrossRef Trivedi CM, Lu MM, Wang Q, et al. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J Biol Chem. 2008;283:26484–9.PubMedCrossRef
10.
go back to reference Bondue A, Blanpain C. Mesp1: a key regulator of cardiovascular lineage commitment. Circ Res. 2010;107:1414–27.PubMedCrossRef Bondue A, Blanpain C. Mesp1: a key regulator of cardiovascular lineage commitment. Circ Res. 2010;107:1414–27.PubMedCrossRef
11.
go back to reference Tanaka M, Chen Z, Bartunkova S, et al. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999;126:1269–80.PubMed Tanaka M, Chen Z, Bartunkova S, et al. The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999;126:1269–80.PubMed
12.
go back to reference Boni A, Urbanek K, Nascimbene A, et al. Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA. 2008;105:15529–34.PubMedCrossRef Boni A, Urbanek K, Nascimbene A, et al. Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA. 2008;105:15529–34.PubMedCrossRef
13.
go back to reference Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, et al. Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 2010;107:429–41.PubMedCrossRef Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, et al. Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 2010;107:429–41.PubMedCrossRef
14.
go back to reference Chen WP, Wu SM. Small molecule regulators of postnatal Nkx2.5 cardiomyoblast proliferation and differentiation. J Cell Mol Med. 2012;16(5):961–5.PubMedCrossRef Chen WP, Wu SM. Small molecule regulators of postnatal Nkx2.5 cardiomyoblast proliferation and differentiation. J Cell Mol Med. 2012;16(5):961–5.PubMedCrossRef
15.
go back to reference Kajstura J, Pertoldi B, Leri A, et al. Telomere shortening is an in vivo marker of myocyte replication and aging. Am J Pathol. 2000;156:813–9.PubMedCrossRef Kajstura J, Pertoldi B, Leri A, et al. Telomere shortening is an in vivo marker of myocyte replication and aging. Am J Pathol. 2000;156:813–9.PubMedCrossRef
16.
go back to reference Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867–76.PubMedCrossRef Towbin JA, Lowe AM, Colan SD, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296:1867–76.PubMedCrossRef
17.
go back to reference Collesi C, Zentilin L, Sinagra G, et al. Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol. 2008;183:117–28.PubMedCrossRef Collesi C, Zentilin L, Sinagra G, et al. Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol. 2008;183:117–28.PubMedCrossRef
18.
go back to reference Koyanagi M, Bushoven P, Iwasaki M, et al. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res. 2007;101:1139–45.PubMedCrossRef Koyanagi M, Bushoven P, Iwasaki M, et al. Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res. 2007;101:1139–45.PubMedCrossRef
19.
go back to reference Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.PubMedCrossRef Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324:98–102.PubMedCrossRef
20.
go back to reference Kajstura J, Gurusamy N, Ogórek B, et al. Myocyte turnover in the aging human heart. Circ Res. 2010;107:1374–86.PubMedCrossRef Kajstura J, Gurusamy N, Ogórek B, et al. Myocyte turnover in the aging human heart. Circ Res. 2010;107:1374–86.PubMedCrossRef
21.
go back to reference Porrello ER, Olson EN. Building a new heart from old parts: stem cell turnover in the aging heart. Circ Res. 2010;107:1292–4.PubMedCrossRef Porrello ER, Olson EN. Building a new heart from old parts: stem cell turnover in the aging heart. Circ Res. 2010;107:1292–4.PubMedCrossRef
22.
go back to reference Hsieh PC, Segers VF, Davis ME, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.PubMedCrossRef Hsieh PC, Segers VF, Davis ME, et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970–4.PubMedCrossRef
23.
go back to reference Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514–24.PubMedCrossRef Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514–24.PubMedCrossRef
24.
go back to reference Olivetti G, Giordano G, Corradi D, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26:1068–79.PubMedCrossRef Olivetti G, Giordano G, Corradi D, et al. Gender differences and aging: effects on the human heart. J Am Coll Cardiol. 1995;26:1068–79.PubMedCrossRef
25.
go back to reference Agah R, Kirshenbaum LA, Abdellatif M, et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest. 1997;100:2722–8.PubMedCrossRef Agah R, Kirshenbaum LA, Abdellatif M, et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest. 1997;100:2722–8.PubMedCrossRef
26.
go back to reference Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104:14068–73.PubMedCrossRef Bearzi C, Rota M, Hosoda T, et al. Human cardiac stem cells. Proc Natl Acad Sci USA. 2007;104:14068–73.PubMedCrossRef
27.
go back to reference Bailey B, Izarra A, Alvarez R, et al. Cardiac stem cell genetic engineering using the alpha-MHC promoter. Regen Med. 2009;4:823–33.PubMedCrossRef Bailey B, Izarra A, Alvarez R, et al. Cardiac stem cell genetic engineering using the alpha-MHC promoter. Regen Med. 2009;4:823–33.PubMedCrossRef
28.
go back to reference Hosoda T, D’Amario D, Cabral-Da-Silva MC, et al. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci USA. 2009;106:17169–74.PubMedCrossRef Hosoda T, D’Amario D, Cabral-Da-Silva MC, et al. Clonality of mouse and human cardiomyogenesis in vivo. Proc Natl Acad Sci USA. 2009;106:17169–74.PubMedCrossRef
29.
go back to reference Stewart R, Yang C, Anyfantis G, et al. Silencing of the expression of pluripotent driven-reporter genes stably transfected into human pluripotent cells. Regen Med. 2008;3:505–22.PubMedCrossRef Stewart R, Yang C, Anyfantis G, et al. Silencing of the expression of pluripotent driven-reporter genes stably transfected into human pluripotent cells. Regen Med. 2008;3:505–22.PubMedCrossRef
30.
go back to reference Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13:541–9.PubMedCrossRef Ohi Y, Qin H, Hong C, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13:541–9.PubMedCrossRef
31.
go back to reference Menasché P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.PubMedCrossRef Menasché P, Alfieri O, Janssens S, et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189–200.PubMedCrossRef
32.
go back to reference Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRef Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRef
33.
go back to reference Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.PubMedCrossRef Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.PubMedCrossRef
34.
go back to reference Ziebart T, Yoon CH, Trepels T, et al. Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ Res. 2008;103:1327–34.PubMedCrossRef Ziebart T, Yoon CH, Trepels T, et al. Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ Res. 2008;103:1327–34.PubMedCrossRef
35.
go back to reference Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA. 2007;104:17783–8.PubMedCrossRef Rota M, Kajstura J, Hosoda T, et al. Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci USA. 2007;104:17783–8.PubMedCrossRef
36.
go back to reference Haider HK, Royta U, Ashraf M. Role of pharmacologically mobilized endogenous bone marrow stem cells for cardiac repair. J Heart Lung Transplant. 2005;24:1996–7.PubMedCrossRef Haider HK, Royta U, Ashraf M. Role of pharmacologically mobilized endogenous bone marrow stem cells for cardiac repair. J Heart Lung Transplant. 2005;24:1996–7.PubMedCrossRef
37.
go back to reference Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167:989–97.PubMedCrossRef Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-­analysis. Arch Intern Med. 2007;167:989–97.PubMedCrossRef
38.
go back to reference Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res. 2011;108:792–6.PubMedCrossRef Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res. 2011;108:792–6.PubMedCrossRef
39.
go back to reference Pfister O, Mouquet F, Jain M, et al. CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005;97:52–61.PubMedCrossRef Pfister O, Mouquet F, Jain M, et al. CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005;97:52–61.PubMedCrossRef
40.
go back to reference Smith RR, Barile L, Cho HC, et al. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.PubMedCrossRef Smith RR, Barile L, Cho HC, et al. Regenerative potential of ­cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation. 2007;115:896–908.PubMedCrossRef
41.
go back to reference Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.PubMedCrossRef Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.PubMedCrossRef
42.
go back to reference Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.PubMedCrossRef Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.PubMedCrossRef
43.
go back to reference D’Amario D, Fiorini C, Campbell PM, et al. Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circ Res. 2011;108:857–61.PubMedCrossRef D’Amario D, Fiorini C, Campbell PM, et al. Functionally competent cardiac stem cells can be isolated from endomyocardial biopsies of patients with advanced cardiomyopathies. Circ Res. 2011;108:857–61.PubMedCrossRef
go back to reference Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167:989–97.PubMedCrossRef Abdel-Latif A, Bolli R, Tleyjeh IM, et al. Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med. 2007;167:989–97.PubMedCrossRef
go back to reference Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.PubMedCrossRef Bolli R, Chugh AR, D’Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378:1847–57.PubMedCrossRef
go back to reference Kajstura J, Gurusamy N, Ogórek B, et al. Myocyte turnover in the aging human heart. Circ Res. 2010;107:1374–86.PubMedCrossRef Kajstura J, Gurusamy N, Ogórek B, et al. Myocyte turnover in the aging human heart. Circ Res. 2010;107:1374–86.PubMedCrossRef
go back to reference Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109:941–61.PubMedCrossRef Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res. 2011;109:941–61.PubMedCrossRef
go back to reference Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.PubMedCrossRef Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904.PubMedCrossRef
Metagegevens
Titel
Cardiovascular Cell Therapy
Auteurs
Annarosa Leri, MD
Jan Kajstura, PhD
Marcello Rota, PhD
Piero Anversa, MD
Copyright
2013
Uitgeverij
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6705-2_45