Skip to main content
Top

2012 | OriginalPaper | Hoofdstuk

12. Stem Cells and Atherosclerosis

Auteur : Jay H. Traverse, MD

Gepubliceerd in: Coronary Heart Disease

Uitgeverij: Springer US

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Many factors contribute to the development of atherosclerosis, including endothelial dysfunction. Research shows that certain types of circulating stem cells and progenitor cells may counteract the development of atherosclerosis following vessel injury and promote vascular health. Yet other studies indicate that these same cells may be involved in the disease’s progression. In this chapter, we sort through these findings and examine the limitations of research to date in order to better understand the role of endothelial progenitor cells and smooth muscle progenitor cells in atherosclerosis and plaque rupture.
Literatuur
1.
go back to reference Ross R. Atherosclerosis – an inflammatory disease. NEJM. 1995;340:115–26. Ross R. Atherosclerosis – an inflammatory disease. NEJM. 1995;340:115–26.
2.
go back to reference Goldschmidt-Clermont PJ, Creager MA, Losordo DW, et al. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation. 2005;112:3341.CrossRef Goldschmidt-Clermont PJ, Creager MA, Losordo DW, et al. Atherosclerosis 2005: recent discoveries and novel hypotheses. Circulation. 2005;112:3341.CrossRef
3.
go back to reference Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRef Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.PubMedCrossRef
4.
go back to reference Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.PubMedCrossRef Hill JM, Zalos G, Halcox JPJ, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348:593–600.PubMedCrossRef
5.
go back to reference Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture. Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.PubMedCrossRef Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture. Angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.PubMedCrossRef
6.
go back to reference Zoll J, Fontaine V, Gourdy P, et al. Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovasc Res. 2008;77:471–80.PubMedCrossRef Zoll J, Fontaine V, Gourdy P, et al. Role of human smooth muscle cell progenitors in atherosclerotic plaque development and composition. Cardiovasc Res. 2008;77:471–80.PubMedCrossRef
7.
go back to reference Shi Q, Rafii S, Wu MH-D, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362–7.PubMed Shi Q, Rafii S, Wu MH-D, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998;92:362–7.PubMed
8.
go back to reference Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.PubMedCrossRef Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008;28:1584–95.PubMedCrossRef
9.
go back to reference Simper D, Stalboerger PG, Panetta CJ, et al. Smooth muscle progenitor cells in human blood. Circulation. 2002;106:1199–204.PubMedCrossRef Simper D, Stalboerger PG, Panetta CJ, et al. Smooth muscle progenitor cells in human blood. Circulation. 2002;106:1199–204.PubMedCrossRef
10.
go back to reference Caplice NM, Bunch TJ, Stalboerger PG, et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA. 2003;100:4754–9.PubMedCrossRef Caplice NM, Bunch TJ, Stalboerger PG, et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA. 2003;100:4754–9.PubMedCrossRef
11.
go back to reference Metharom P, Liu C, Wang S, et al. Myeloid lineage of high proliferative potential human smooth muscle outgrowth cells in circulating in blood and vasculogenic smooth muscle-like cells in vivo. Atherosclerosis. 2008;198:29–38.PubMedCrossRef Metharom P, Liu C, Wang S, et al. Myeloid lineage of high proliferative potential human smooth muscle outgrowth cells in circulating in blood and vasculogenic smooth muscle-like cells in vivo. Atherosclerosis. 2008;198:29–38.PubMedCrossRef
12.
go back to reference Moreno PR, Purushothaman R, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta. Implications for plaque vulnerability. Circulation. 2004;110:2032–8.PubMedCrossRef Moreno PR, Purushothaman R, Fuster V, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta. Implications for plaque vulnerability. Circulation. 2004;110:2032–8.PubMedCrossRef
13.
go back to reference Zhang Y, Cliff WJ, Schoefl GI, et al. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143:164–72.PubMed Zhang Y, Cliff WJ, Schoefl GI, et al. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143:164–72.PubMed
14.
go back to reference Langheinrich AC, Michniewicz A, Sedding DG, et al. Correlation of vaso vasorum neovascularization and plaque progression in aortas of apolipoprotein E−/−/low-density lipoprotein−/− double knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:347–52.PubMedCrossRef Langheinrich AC, Michniewicz A, Sedding DG, et al. Correlation of vaso vasorum neovascularization and plaque progression in aortas of apolipoprotein E−/−/low-density lipoprotein−/− double knockout mice. Arterioscler Thromb Vasc Biol. 2006;26:347–52.PubMedCrossRef
15.
go back to reference Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA. 2003;100:4736–41.PubMedCrossRef Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA. 2003;100:4736–41.PubMedCrossRef
16.
go back to reference Moreno PR, Purushothaman KR, Zias E, et al. Neovascularization in human atherosclerosis. Curr Mole Med. 2006;6:457–77.CrossRef Moreno PR, Purushothaman KR, Zias E, et al. Neovascularization in human atherosclerosis. Curr Mole Med. 2006;6:457–77.CrossRef
17.
go back to reference George J, Afek A, Abashidze A, et al. Transfer of endothelial progenitor and bone marrow cells influence atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2005;25:2636–41.PubMedCrossRef George J, Afek A, Abashidze A, et al. Transfer of endothelial progenitor and bone marrow cells influence atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2005;25:2636–41.PubMedCrossRef
18.
go back to reference Silvestre J-S, Gojova A, Brun V, et al. Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation. 2003;108:2839–42.PubMedCrossRef Silvestre J-S, Gojova A, Brun V, et al. Transplantation of bone marrow-derived mononuclear cells in ischemic apolipoprotein E-knockout mice accelerates atherosclerosis without altering plaque composition. Circulation. 2003;108:2839–42.PubMedCrossRef
19.
go back to reference Torsney E, Mandal K, Halliday A, et al. Characterization of progenitor cells in human atherosclerotic vessels. Atherosclerosis. 2007;191:259–64.PubMedCrossRef Torsney E, Mandal K, Halliday A, et al. Characterization of progenitor cells in human atherosclerotic vessels. Atherosclerosis. 2007;191:259–64.PubMedCrossRef
20.
go back to reference Zengin E, Chalajour F, Gehling UM, et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development. 2006;133:1543–51.PubMedCrossRef Zengin E, Chalajour F, Gehling UM, et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development. 2006;133:1543–51.PubMedCrossRef
21.
go back to reference Ingram DA, Mead LE, Moore DB, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–6.PubMedCrossRef Ingram DA, Mead LE, Moore DB, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood. 2005;105:2783–6.PubMedCrossRef
22.
go back to reference Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation. 2003;108:457–63.PubMedCrossRef Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation. 2003;108:457–63.PubMedCrossRef
23.
go back to reference Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002;8:403–9.PubMedCrossRef Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002;8:403–9.PubMedCrossRef
24.
go back to reference Daniel JM, Tillmanns H, Sedding DG. Time course analysis of bone marrow-derived progenitor cell transdifferentiation during neointima formation. Circulation. 2009;120:S1130. Daniel JM, Tillmanns H, Sedding DG. Time course analysis of bone marrow-derived progenitor cell transdifferentiation during neointima formation. Circulation. 2009;120:S1130.
25.
go back to reference Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. JCI. 2004;113:1258–65.PubMed Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. JCI. 2004;113:1258–65.PubMed
26.
go back to reference Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1–7.PubMedCrossRef Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:E1–7.PubMedCrossRef
27.
go back to reference Kunz GA, Liang G, Cuculi F, et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Heart. 2006;152:109–95. Kunz GA, Liang G, Cuculi F, et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Heart. 2006;152:109–95.
28.
go back to reference Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999–1007.PubMedCrossRef Werner N, Kosiol S, Schiegl T, et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353:999–1007.PubMedCrossRef
29.
go back to reference Xiao Q, Kiechl S, Patel S, et al. Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis-results from a large population-based study. PLoS One. 2007;2:e975.PubMedCrossRef Xiao Q, Kiechl S, Patel S, et al. Endothelial progenitor cells, cardiovascular risk factors, cytokine levels and atherosclerosis-results from a large population-based study. PLoS One. 2007;2:e975.PubMedCrossRef
30.
go back to reference Guven H, Shepherd RM, Bach RG, et al. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol. 2006;48:1579–87.PubMedCrossRef Guven H, Shepherd RM, Bach RG, et al. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol. 2006;48:1579–87.PubMedCrossRef
31.
go back to reference George J, Goldstein E, Abashidze S, et al. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J. 2004;25:1003–8.PubMedCrossRef George J, Goldstein E, Abashidze S, et al. Circulating endothelial progenitor cells in patients with unstable angina: association with systemic inflammation. Eur Heart J. 2004;25:1003–8.PubMedCrossRef
32.
go back to reference Celletti FL, Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7:425–33.PubMedCrossRef Celletti FL, Waugh JM, Amabile PG, et al. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7:425–33.PubMedCrossRef
33.
go back to reference Schachinger V, Erbs S, Elasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.PubMedCrossRef Schachinger V, Erbs S, Elasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210–21.PubMedCrossRef
34.
go back to reference Schachunger V, Erbs S, Elasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.CrossRef Schachunger V, Erbs S, Elasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83.CrossRef
35.
go back to reference Erbs S, Linke A, Schachinger V, et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction. Circulation. 2007;116:366–74.PubMedCrossRef Erbs S, Linke A, Schachinger V, et al. Restoration of microvascular function in the infarct-related artery by intracoronary transplantation of bone marrow progenitor cells in patients with acute myocardial infarction. Circulation. 2007;116:366–74.PubMedCrossRef
36.
go back to reference Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction – eighteen months’ follow-up data from randomized, controlled BOOST (bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.PubMedCrossRef Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction – eighteen months’ follow-up data from randomized, controlled BOOST (bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287–94.PubMedCrossRef
37.
go back to reference Lunde K, Solheim S, Forfang K, et al. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells. Safety, clinical outcome, and serial changes in left-ventricular function during 12-months’ follow-up. J Am Coil Cardiol. 2008;51:674–6.CrossRef Lunde K, Solheim S, Forfang K, et al. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells. Safety, clinical outcome, and serial changes in left-ventricular function during 12-months’ follow-up. J Am Coil Cardiol. 2008;51:674–6.CrossRef
38.
go back to reference Liu PX, Zhang L, Liao WB, et al. Transfusion of allogeneic mesenchymal stem cells promotes progression of atherosclerotic plaque in rabbits. Zhongguo Shi Yan Xue Ye Xue ZaZhi. 2009;17:700–5. Liu PX, Zhang L, Liao WB, et al. Transfusion of allogeneic mesenchymal stem cells promotes progression of atherosclerotic plaque in rabbits. Zhongguo Shi Yan Xue Ye Xue ZaZhi. 2009;17:700–5.
39.
go back to reference Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.PubMedCrossRef Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose escalation study of intravenous adult human mesenchymal stem cells (Prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–86.PubMedCrossRef
40.
go back to reference Losordo DW, Henry TD, Schatz RA, et al. Autologous CD34+ cell therapy for refractory angina: 12 month results of the phase II ACT34-CMI study. Circulation. 2009;120:S1132. Losordo DW, Henry TD, Schatz RA, et al. Autologous CD34+ cell therapy for refractory angina: 12 month results of the phase II ACT34-CMI study. Circulation. 2009;120:S1132.
41.
go back to reference Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem cells mobilized with granulocyte-colony stimulating factor on left-ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet. 2004;363:751–6.PubMedCrossRef Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem cells mobilized with granulocyte-colony stimulating factor on left-ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomized clinical trial. Lancet. 2004;363:751–6.PubMedCrossRef
42.
go back to reference Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary infusion of CD133+ enriched bone marrow progenitors promotes cardiac recovery after recent myocardial infarction. Feasibility and safety. Circulation. 2005;112:I178–83.PubMed Bartunek J, Vanderheyden M, Vandekerckhove B, et al. Intracoronary infusion of CD133+ enriched bone marrow progenitors promotes cardiac recovery after recent myocardial infarction. Feasibility and safety. Circulation. 2005;112:I178–83.PubMed
43.
go back to reference Mansour S, Vanderheyden M, De Bruyne B, et al. Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J Am Coll Cardiol. 2006;47:1727–30.PubMedCrossRef Mansour S, Vanderheyden M, De Bruyne B, et al. Intracoronary delivery of hematopoietic bone marrow stem cells and luminal loss of the infarct-related artery in patients with recent myocardial infarction. J Am Coll Cardiol. 2006;47:1727–30.PubMedCrossRef
Metagegevens
Titel
Stem Cells and Atherosclerosis
Auteur
Jay H. Traverse, MD
Copyright
2012
Uitgeverij
Springer US
DOI
https://doi.org/10.1007/978-1-4614-1475-9_12