Skip to main content
Top

Tip

Swipe om te navigeren naar een ander hoofdstuk

2024 | OriginalPaper | Hoofdstuk

4. Concept and use of Virtual Reality simulators and serious gaming

Auteurs : Golsa Shafa, BSc, Dr. Amin Madani, MD, PhD

Gepubliceerd in: The Technical Principles of Endoscopic Surgery

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Virtual reality simulators have been incorporated into surgical education to provide opportunities for deliberate practice. A broad range of immersive experiences with virtual reality stimulators are commercially available that range from low fidelity devices to high fidelity systems equipped with haptic feedback. Studies have demonstrated the validity of these devices and their ability to shorten learning curves. Concurrent with simulators, serious gaming has become increasingly popular in medical education. These artificial intelligence driven technologies provide a safe learning environment with the additional advantages of standardization and automated feedback. Current applications include the development of basic and complex surgical skills, warm-up and training prior to complex surgeries, assessment of skill, and preoperative or intraoperative planning. Factors like cost, system design, and learning objectives should be considered when considering virtual reality simulation in surgical education.
Literatuur
1.
go back to reference Berrondo C, Canalichio KL, Lendvay TS. Education and simulation in minimally invasive surgery. In: Minimally invasive and robotic-assisted surgery in pediatric urology. Cham: Springer; 2020. pp. 419–436. Berrondo C, Canalichio KL, Lendvay TS. Education and simulation in minimally invasive surgery. In: Minimally invasive and robotic-assisted surgery in pediatric urology. Cham: Springer; 2020. pp. 419–436.
2.
go back to reference Papanikolaou IG, Haidopoulos D, Paschopoulos M, Chatzipapas I, Loutradis D, Vlahos NF. Changing the way we train surgeons in the 21th century: a narrative comparative review focused on box trainers and virtual reality simulators. Euro J Obstetr Gynecol Reprod Biol. 2019;235:13–8. CrossRef Papanikolaou IG, Haidopoulos D, Paschopoulos M, Chatzipapas I, Loutradis D, Vlahos NF. Changing the way we train surgeons in the 21th century: a narrative comparative review focused on box trainers and virtual reality simulators. Euro J Obstetr Gynecol Reprod Biol. 2019;235:13–8. CrossRef
3.
go back to reference Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev Med Devices. 2021;18(1):47–62. CrossRefPubMed Lungu AJ, Swinkels W, Claesen L, Tu P, Egger J, Chen X. A review on the applications of virtual reality, augmented reality and mixed reality in surgical simulation: an extension to different kinds of surgery. Expert Rev Med Devices. 2021;18(1):47–62. CrossRefPubMed
4.
go back to reference Papanikolaou IG, Haidopoulos D, Paschopoulos M, Chatzipapas I, Loutradis D, Vlahos NF. Changing the way we train surgeons in the 21th century: a narrative comparative review focused on box trainers and virtual reality simulators. Euro J Obstetr Gynecol Reprod Biol. 2019;235:13–8. CrossRef Papanikolaou IG, Haidopoulos D, Paschopoulos M, Chatzipapas I, Loutradis D, Vlahos NF. Changing the way we train surgeons in the 21th century: a narrative comparative review focused on box trainers and virtual reality simulators. Euro J Obstetr Gynecol Reprod Biol. 2019;235:13–8. CrossRef
5.
go back to reference Bergeron B. Developing serious games. Hingham, Massachusetts: Charles River Media. Inc.; 2006. Bergeron B. Developing serious games. Hingham, Massachusetts: Charles River Media. Inc.; 2006.
6.
go back to reference Moorthy K, Munz Y, Sarker SA, Darzi A. Objective assessment of technical skills in surgery. BMJ. 2001;327:1032–7. CrossRef Moorthy K, Munz Y, Sarker SA, Darzi A. Objective assessment of technical skills in surgery. BMJ. 2001;327:1032–7. CrossRef
7.
go back to reference Satava RM. Historical review of surgical simulation – a personal perspective. World J Surg. 2008;32(2):141–8. CrossRefPubMed Satava RM. Historical review of surgical simulation – a personal perspective. World J Surg. 2008;32(2):141–8. CrossRefPubMed
8.
go back to reference Delp SL, Loan JP, Hoy MG, et al. An interactive graphics based model of the lower extremity to study orthopedic surgical procedures. IEEE Trans Biomed Eng. 1990;37:757–67. CrossRefPubMed Delp SL, Loan JP, Hoy MG, et al. An interactive graphics based model of the lower extremity to study orthopedic surgical procedures. IEEE Trans Biomed Eng. 1990;37:757–67. CrossRefPubMed
9.
go back to reference Beyer-Berjot L, Aggarwal R. Toward technology-supported surgical training: the potential of virtual simulators in laparoscopic surgery. Scand J Surg. 2013;102(4):221–6. CrossRefPubMed Beyer-Berjot L, Aggarwal R. Toward technology-supported surgical training: the potential of virtual simulators in laparoscopic surgery. Scand J Surg. 2013;102(4):221–6. CrossRefPubMed
10.
go back to reference Dargar S, Kennedy R, Lai W, Arikatla V, De S. Towards immersive virtual reality (iVR): a route to surgical expertise. J Computation Surg. 2015;2(1):1–26. Dargar S, Kennedy R, Lai W, Arikatla V, De S. Towards immersive virtual reality (iVR): a route to surgical expertise. J Computation Surg. 2015;2(1):1–26.
12.
go back to reference Taffinder N, Sutton C, Fishwick RJ, McManus IC, Darzi A. Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomised controlled studies using the MIST-VR laparoscopic simulator. Stud Health Technol Inform. 1998;50:124–30. PubMed Taffinder N, Sutton C, Fishwick RJ, McManus IC, Darzi A. Validation of virtual reality to teach and assess psychomotor skills in laparoscopic surgery: results from randomised controlled studies using the MIST-VR laparoscopic simulator. Stud Health Technol Inform. 1998;50:124–30. PubMed
13.
go back to reference Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268:70–6. CrossRefPubMed Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268:70–6. CrossRefPubMed
14.
go back to reference Rangarajan K, Davis H, Pucher PH. Systematic review of virtual haptics in surgical simulation: a valid educational tool? J Surg Educ. 2020;77(2):337–47. CrossRefPubMed Rangarajan K, Davis H, Pucher PH. Systematic review of virtual haptics in surgical simulation: a valid educational tool? J Surg Educ. 2020;77(2):337–47. CrossRefPubMed
15.
go back to reference Frederiksen JG, Sørensen SMD, Konge L, Svendsen MBS, Nobel-Jørgensen M, Bjerrum F, Andersen SAW. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial. Surg Endosc. 2020;34(3):1244–52. CrossRefPubMed Frederiksen JG, Sørensen SMD, Konge L, Svendsen MBS, Nobel-Jørgensen M, Bjerrum F, Andersen SAW. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: a randomized trial. Surg Endosc. 2020;34(3):1244–52. CrossRefPubMed
16.
go back to reference Jin C, Dai L, Wang T. The application of virtual reality in the training of laparoscopic surgery: a systematic review and meta-analysis. Int J Surg. 2021;87: 105859. CrossRefPubMed Jin C, Dai L, Wang T. The application of virtual reality in the training of laparoscopic surgery: a systematic review and meta-analysis. Int J Surg. 2021;87: 105859. CrossRefPubMed
17.
go back to reference Mylonas GP, Darzi A, Zhong Yang G. Gaze-contingent control for minimally invasive robotic surgery. Comput Aided Surg. 2006;11(5):256–66. CrossRefPubMed Mylonas GP, Darzi A, Zhong Yang G. Gaze-contingent control for minimally invasive robotic surgery. Comput Aided Surg. 2006;11(5):256–66. CrossRefPubMed
18.
go back to reference Mohamadipanah H, Perrone KH, Nathwani J, Parthiban C, Peterson K, Wise B, Pugh C. Screening surgical residents’ laparoscopic skills using virtual reality tasks: who needs more time in the sim lab? Surgery. 2019;166(2):218–22. CrossRefPubMed Mohamadipanah H, Perrone KH, Nathwani J, Parthiban C, Peterson K, Wise B, Pugh C. Screening surgical residents’ laparoscopic skills using virtual reality tasks: who needs more time in the sim lab? Surgery. 2019;166(2):218–22. CrossRefPubMed
19.
go back to reference Våpenstad C, Buzink SN. Procedural virtual reality simulation in minimally invasive surgery. Surg Endosc. 2013;27(2):364–77. CrossRefPubMed Våpenstad C, Buzink SN. Procedural virtual reality simulation in minimally invasive surgery. Surg Endosc. 2013;27(2):364–77. CrossRefPubMed
20.
go back to reference Han JJ, Brooks AD. How can we be more “deliberate” in training surgeons? Am J Surg. 2017;216(2):359–60. CrossRefPubMed Han JJ, Brooks AD. How can we be more “deliberate” in training surgeons? Am J Surg. 2017;216(2):359–60. CrossRefPubMed
21.
go back to reference Mohamadipanah H, Perrone KH, Nathwani J, Parthiban C, Peterson K, Wise B, Pugh C. Screening surgical residents’ laparoscopic skills using virtual reality tasks: who needs more time in the sim lab? Surgery. 2019;166(2):218–22. CrossRefPubMed Mohamadipanah H, Perrone KH, Nathwani J, Parthiban C, Peterson K, Wise B, Pugh C. Screening surgical residents’ laparoscopic skills using virtual reality tasks: who needs more time in the sim lab? Surgery. 2019;166(2):218–22. CrossRefPubMed
22.
go back to reference Greta B. Surgical simulation: the value of individualization. University of Washington Medical Center; 2016. Greta B. Surgical simulation: the value of individualization. University of Washington Medical Center; 2016.
23.
go back to reference Impact of laparoscopy simulator training on the technical skills of future surgeons in the operating room: a prospective study; Laura Beyer, Jérémie De Troyer, Julien Mancini, Franck Bladou, Stéphane V. Berdah, Gilles Karsenty, 2011. Impact of laparoscopy simulator training on the technical skills of future surgeons in the operating room: a prospective study; Laura Beyer, Jérémie De Troyer, Julien Mancini, Franck Bladou, Stéphane V. Berdah, Gilles Karsenty, 2011.
24.
go back to reference Nemani A, Ahn W, Cooper C, Schwaitzberg S, De S. Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator. Surg Endosc. 2018;32(3):1265–72. CrossRefPubMed Nemani A, Ahn W, Cooper C, Schwaitzberg S, De S. Convergent validation and transfer of learning studies of a virtual reality-based pattern cutting simulator. Surg Endosc. 2018;32(3):1265–72. CrossRefPubMed
25.
go back to reference Bernier GV, Sanchez JE. Surgical simulation: the value of individualization. Surg Endosc. 2016;30(8):3191–7. CrossRefPubMed Bernier GV, Sanchez JE. Surgical simulation: the value of individualization. Surg Endosc. 2016;30(8):3191–7. CrossRefPubMed
26.
go back to reference Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236:458–64. CrossRefPubMedPubMedCentral Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236:458–64. CrossRefPubMedPubMedCentral
29.
go back to reference Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92. CrossRefPubMedPubMedCentral Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92. CrossRefPubMedPubMedCentral
30.
go back to reference Bhakhri K, Harrison-Phipps K, Harling L, Routledge T. Should robotic surgery simulation be introduced in the core surgical training curriculum? Front Surg. 2021;8:42. CrossRef Bhakhri K, Harrison-Phipps K, Harling L, Routledge T. Should robotic surgery simulation be introduced in the core surgical training curriculum? Front Surg. 2021;8:42. CrossRef
31.
go back to reference Harrington CM, Chaitanya V, Dicker P, Traynor O, Kavanagh DO. Playing to your skills: a randomised controlled trial evaluating a dedicated video game for minimally invasive surgery. Surg Endosc. 2018;32(9):3813–21. CrossRefPubMed Harrington CM, Chaitanya V, Dicker P, Traynor O, Kavanagh DO. Playing to your skills: a randomised controlled trial evaluating a dedicated video game for minimally invasive surgery. Surg Endosc. 2018;32(9):3813–21. CrossRefPubMed
32.
go back to reference IJgosse W, Van Goor H, Rosman C, Luursema JM. Construct validity of a serious game for laparoscopic skills training: validation study. JMIR Serious Games. 2020;8(2):e17222. IJgosse W, Van Goor H, Rosman C, Luursema JM. Construct validity of a serious game for laparoscopic skills training: validation study. JMIR Serious Games. 2020;8(2):e17222.
33.
go back to reference IJgosse WM, Van Goor H, Luursema JM. Saving robots improves laparoscopic performance: transfer of skills from a serious game to a virtual reality simulator. Surg Endosc. 2018;32(7):3192–9. IJgosse WM, Van Goor H, Luursema JM. Saving robots improves laparoscopic performance: transfer of skills from a serious game to a virtual reality simulator. Surg Endosc. 2018;32(7):3192–9.
34.
go back to reference IJgosse WM, Van Goor H, Rosman C, Luursema JM. The fun factor: does serious gaming affect the volume of voluntary laparoscopic skills training? World J Surg. 2021;45(1):66–71. IJgosse WM, Van Goor H, Rosman C, Luursema JM. The fun factor: does serious gaming affect the volume of voluntary laparoscopic skills training? World J Surg. 2021;45(1):66–71.
35.
go back to reference Lee JY, Mucksavage P, Sundaram CP, McDougall EM. Best practices for robotic surgery training and credentialing. J Urol. 2011;185(4):1191–7. CrossRefPubMed Lee JY, Mucksavage P, Sundaram CP, McDougall EM. Best practices for robotic surgery training and credentialing. J Urol. 2011;185(4):1191–7. CrossRefPubMed
36.
go back to reference Buchs NC, Pugin F, Volonté F, Morel P. Learning tools and simulation in robotic surgery: state of the art. World J Surg. 2013;37(12):2812–9. CrossRefPubMed Buchs NC, Pugin F, Volonté F, Morel P. Learning tools and simulation in robotic surgery: state of the art. World J Surg. 2013;37(12):2812–9. CrossRefPubMed
37.
go back to reference Augestad KM, Chomutare T, Bellika JG, Budrionis A, Lindsetmo RO, Delaney CP. Clinical and educational benefits of surgical telementoring. In: Patel H, Joseph JV, editors. HRH Patel and Joseph JV. Simulation training in laparoscopy and robotic surgery. London: Springer; 2012. pp. 75–89 . Augestad KM, Chomutare T, Bellika JG, Budrionis A, Lindsetmo RO, Delaney CP. Clinical and educational benefits of surgical telementoring. In: Patel H, Joseph JV, editors. HRH Patel and Joseph JV. Simulation training in laparoscopy and robotic surgery. London: Springer; 2012. pp. 75–89 .
39.
go back to reference Våpenstad C, Buzink SN. Procedural virtual reality simulation in minimally invasive surgery. Surg Endosc. 2013;27(2):364–77. CrossRefPubMed Våpenstad C, Buzink SN. Procedural virtual reality simulation in minimally invasive surgery. Surg Endosc. 2013;27(2):364–77. CrossRefPubMed
40.
go back to reference Bellman R. An introduction to artificial intelligence: can computers think? Thomson Course Technology; 1978. Bellman R. An introduction to artificial intelligence: can computers think? Thomson Course Technology; 1978.
41.
go back to reference Winkler-Schwartz A, Yilmaz R, Mirchi N, Bissonnette V, Ledwos N, Siyar S, Del Maestro R. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw Open. 2019;2(8):e198363–e198363. CrossRefPubMed Winkler-Schwartz A, Yilmaz R, Mirchi N, Bissonnette V, Ledwos N, Siyar S, Del Maestro R. Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation. JAMA Netw Open. 2019;2(8):e198363–e198363. CrossRefPubMed
42.
go back to reference Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS One. 2020;15(2): e0229596. CrossRefPubMedPubMedCentral Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS One. 2020;15(2): e0229596. CrossRefPubMedPubMedCentral
43.
go back to reference Aoki T, Koizumi T, Mansour DA, Fujimori A, Kusano T, Matsuda K, Murakami M. Virtual reality with three-dimensional image guidance of individual patients’ vessel anatomy in laparoscopic distal pancreatectomy. Langenbecks Arch Surg. 2020;405(3):381–9. CrossRefPubMed Aoki T, Koizumi T, Mansour DA, Fujimori A, Kusano T, Matsuda K, Murakami M. Virtual reality with three-dimensional image guidance of individual patients’ vessel anatomy in laparoscopic distal pancreatectomy. Langenbecks Arch Surg. 2020;405(3):381–9. CrossRefPubMed
44.
go back to reference Aoki T, Murakami M, Fujimori A, Koizumi T, Enami Y, Kusano T, Otsuka K. Routes for virtually guided endoscopic liver resection of subdiaphragmatic liver tumors. Langenbecks Arch Surg. 2016;401(2):263–73. CrossRefPubMed Aoki T, Murakami M, Fujimori A, Koizumi T, Enami Y, Kusano T, Otsuka K. Routes for virtually guided endoscopic liver resection of subdiaphragmatic liver tumors. Langenbecks Arch Surg. 2016;401(2):263–73. CrossRefPubMed
46.
go back to reference Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, … Alseidi A. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 2022. Madani A, Namazi B, Altieri MS, Hashimoto DA, Rivera AM, Pucher PH, … Alseidi A. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 2022.
47.
go back to reference Hashimoto DA, et al. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019;270:414–21. CrossRefPubMed Hashimoto DA, et al. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg. 2019;270:414–21. CrossRefPubMed
48.
go back to reference Situating Artificial Intelligence in Surgery: A Focus on Disease Severity. James R Korndorffer Jr, Mary T Hawn, David A Spain, Lisa M Knowlton, Dan E Azagury, Aussama K Nassar, James N Lau, Katherine D Arnow, Amber W Trickey, Carla M Pugh, 2020, Sept 1. Situating Artificial Intelligence in Surgery: A Focus on Disease Severity. James R Korndorffer Jr, Mary T Hawn, David A Spain, Lisa M Knowlton, Dan E Azagury, Aussama K Nassar, James N Lau, Katherine D Arnow, Amber W Trickey, Carla M Pugh, 2020, Sept 1.
50.
go back to reference Winkler-Schwartz A, et al. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ. 2019;76:1681–90. CrossRefPubMed Winkler-Schwartz A, et al. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ. 2019;76:1681–90. CrossRefPubMed
51.
go back to reference Budrionis, et al. An evaluation framework for defining the contributions of telestration in surgical telementoring. Interact J Med Res. 2013;2(2):e14.1. Budrionis, et al. An evaluation framework for defining the contributions of telestration in surgical telementoring. Interact J Med Res. 2013;2(2):e14.1.
52.
go back to reference Jarc, et al. Beyond 2D telestration: an evaluation of novel proctoring tools for robot-assisted minimally invasive surgery. J Robot Surg. 2016;10:103–9. Jarc, et al. Beyond 2D telestration: an evaluation of novel proctoring tools for robot-assisted minimally invasive surgery. J Robot Surg. 2016;10:103–9.
53.
go back to reference Jarc, et al. (2016) Proctors exploit three-dimensional ghost tools during clinical-like training scenarios: a preliminary study. World J Urol. 2017;35:957–65. CrossRefPubMed Jarc, et al. (2016) Proctors exploit three-dimensional ghost tools during clinical-like training scenarios: a preliminary study. World J Urol. 2017;35:957–65. CrossRefPubMed
54.
go back to reference Broeders IAMJ, Kalisingh SS. Handboek endoscopische chirurgie. Houten: Bohn Stafleu van Loghum; 2009. Broeders IAMJ, Kalisingh SS. Handboek endoscopische chirurgie. Houten: Bohn Stafleu van Loghum; 2009.
Metagegevens
Titel
Concept and use of Virtual Reality simulators and serious gaming
Auteurs
Golsa Shafa, BSc
Dr. Amin Madani, MD, PhD
Copyright
2024
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2905-2_4