skip to main content
10.1145/1753326.1753671acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Touch projector: mobile interaction through video

Published:10 April 2010Publication History

ABSTRACT

In 1992, Tani et al. proposed remotely operating machines in a factory by manipulating a live video image on a computer screen. In this paper we revisit this metaphor and investigate its suitability for mobile use. We present Touch Projector, a system that enables users to interact with remote screens through a live video image on their mobile device. The handheld device tracks itself with respect to the surrounding displays. Touch on the video image is "projected" onto the target display in view, as if it had occurred there. This literal adaptation of Tani's idea, however, fails because handheld video does not offer enough stability and control to enable precise manipulation. We address this with a series of improvements, including zooming and freezing the video image. In a user study, participants selected targets and dragged targets between displays using the literal and three improved versions. We found that participants achieved highest performance with automatic zooming and temporary image freezing.

Skip Supplemental Material Section

Supplemental Material

p2287.wmv

wmv

42.8 MB

References

  1. Balakrishnan, R., and Baudisch, P. (2009). Special Issue on Ubiquitous Multi-Display Environments. HCI Journal 24, 1 & 2.Google ScholarGoogle Scholar
  2. Ballagas, R., Rohs, M., and Sheridan, J.G. (2005). Sweep and point & shoot: phonecam-based interactions for large public displays. Ext. Abstracts CHI 2005, 1200--1203. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ballagas, R., Borchers, J., Rohs, M., and Sheridan, J.G. (2006). The Smart Phone: a ubiquitous input device. IEEE Pervasive Computing 5, 1, 70--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Baudisch, P., Cutrell, E., Robbins, D., Czerwinski, M., Tandler, P., Bederson, B., and Zierlinger, A. (2003). Drag-and-pop and drag-and-pick: Techniques for accessing remote screen content on touch- and pen-operated systems. Proc. Interact 2003, 57--64.Google ScholarGoogle Scholar
  5. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., and DeRose, T.D. (1993). Toolglass and magic lenses: the see--through interface. Proc. SIGGRAPH 1993, 73--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Boring, S., Altendorfer, M., Broll, G., Hilliges, O., and Butz, A. (2007). Shoot & copy: phonecam-based information transfer from public displays onto mobile phones. Proc. Mobility 2007, 24--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buxton, W., and Myers, B. (1986). A study in two-handed input. Proc. CHI 1986, 321--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fitzmaurice, G.W. (1993). Situated information spaces and spatially aware palmtop computers. Communications of the ACM 36, 7, 39--49. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Forlines, C., Vogel, D., and Balakrishnan, R. (2006). HybridPointing: fluid switching between absolute and relative pointing with a direct input device. Proc. UIST 2006, 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Guimbretière, F., Martin, A., and Winograd, T. (2005) Benefits of merging command selection and direct manipulation. ACM Transactions on Computer-Human Interaction 12, 3, 460--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hinckley, K., Ramos, G., Guimbretière, F., Baudisch, P., and Smith, M. (2004). Stitching: pen gestures that span multiple displays. Proc. AVI 2004, 23--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Johanson, B., Hutchins, G., Winograd, T., and Stone, M. (2002). PointRight: experience with flexible input redirection in interactive workspaces. Proc. UIST 2002, 227--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kabbash, P., Buxton, W., Sellen, A. (1994). Two-handed input in a compound task. Proc. CHI 1994, 417--423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kato, H., and Billinghurst, M. (1999). Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. Proc. IEEE and ACM International Workshop on Augmented Reality, 85--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Latulipe, C., Kaplan, C.S., Clarke, C.L.A. (2005). Bimanual and unimanual image alignment: an evaluation of mouse-based techniques. Proc. UIST 2005, 123--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liao, C., Liu, Q., Kimber, D., Chiu, P., Foote, J., and Wilcox, L. (2003). Shared interactive video for teleconferencing. Proc. ACM Multimedia 2003, 546--554. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Myers, B., Bhatnagar, R., Nichols, J., Peck, C.H., Kong, D., Miller, R., and Long, A.C. (2002). Interacting at a distance: measuring the performance of laser pointers and other devices. Proc. CHI 2002, 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Nacenta, M.A., Sallam, S., Champoux, B., Subramanian, S., and Gutwin, C. (2006). Perspective cursor: perspective-based interaction for multi-display environments. Proc. CHI 2006, 289--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Nacenta, M.A., Gutwin, C., Aliakseyeu, D., and Subra-manian, S. (2009). There and back again: cross-display object movement in multi-display environments. HCI Journal 24, 1, 170--229.Google ScholarGoogle Scholar
  20. Pears, N., Jackson, D., and Olivier, P. (2009). Smart phone interaction with registered displays. IEEE Computer 8, 2, 14--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Pierce, J.S., Forsberg, A.S., Conway, M.J., Hong, S., Zeleznik, R.C., and Mine, M.R. (1997). Image plane interaction techniques in 3D immersive environments. Proc. Symposium on Interactive 3D Graphics, 39--43. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Poupyrev, I., Billinghurst, M., Weghorst, S., and Ichikawa, T. (1996). The go-go interaction technique: non-linear mapping for direct manipulation in VR. Proc. UIST 1996, 79--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Rekimoto, J. (1997). Pick-and-drop: a direct manipulation technique for multiple computer environments. Proc. UIST 1997, 31--39. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Robertson, G., Czerwinski, M., Baudisch, P., Meyers, B., Robbins, D., Smith, G., and Tan, D. (2005). The large-display user experience. IEEE Computer Graphics and Applications, 25, 4, 44--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rohs, M., Schöning, J., Raubal, M., Essl, G., and Krüger, A. (2007). Map navigation with mobile devices: virtual versus physical movement with and without visual context. Proc. ICMI 2007, 146--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sakamoto, D., Honda, K., Inami, M., and Igarashi, T. (2009). Sketch and run: a stroke-based interface for home robots. Proc. CHI 2009, 197--200. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sears, A., and Shneiderman, B. (1991). High precision touchscreens: design strategies and comparisons with a mouse. International Journal of Man-Machine Studies 34, 4, 593--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Seifried, T., Haller, M., Scott, S.D., Perteneder, C., Rendl, C., Sakamoto, D., Inami, M. (2009). CRISTAL: design and implementation of a remote control system based on a multi-touch display. Proc. ITS 2009, 33--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages. IEEE Computer 16, 8, 57--69. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Shoemaker, G., Tang, A., and Booth, K.S. (2007). Shadow reaching: a new perspective on interaction for large displays. Proc. UIST 2007, 53--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Stoakley, R., Conway, M.J., and Pausch, R. (1995). Virtual reality on a WIM: interactive worlds in miniature. Proc. CHI 1995, 265--272. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tan, D.S., Meyers, B., and Czerwinski, M. (2004). WinCuts: manipulating arbitrary window regions for more effective use of screen space. Ext. Abstracts CHI 2004, 1525--1528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Tani, M., Yamaashi, K., Tanikoshi, K., Futakawa, M., and Tanifuji, S. (1992). Object-oriented video: interaction with real-world objects through live video. Proc. CHI 1992, 593--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Tsang, M., Fitzmaurice, G.W., Kurtenbach, G., Khan, A., Buxton, B. (2002). Boom chameleon: simultaneous capture of 3D viewpoint, voice and gesture annotations on a spatially-aware display. Proc. UIST 2002, 111--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Vogel, D., and Baudisch, P. (2007). Shift: a technique for operating pen-based interfaces using touch. Proc. CHI 2007, 657--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Wilson, A., and Shafer, S. (2003). XWand: UI for intelligent spaces. Proc. CHI 2003, 545--552. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Yee, K.-P. (2003). Peephole displays: pen interaction on spatially aware handheld computers. Proc. CHI'03, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Touch projector: mobile interaction through video

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '10: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
        April 2010
        2690 pages
        ISBN:9781605589299
        DOI:10.1145/1753326

        Copyright © 2010 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 10 April 2010

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader