Skip to main content
Top
Gepubliceerd in: Tijdschrift voor Kindergeneeskunde 1/2014

01-01-2014

Exoom-sequencing in de diagnostiek van ontwikkelingsachterstand/verstandelijke beperking

Auteurs: Mw. dr. M.H. Willemsen, mw. dr. T. Kleefstra, mw. dr. H.G. Yntema

Gepubliceerd in: Tijdschrift voor Kindergeneeskunde | Uitgave 1/2014

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Onverklaarde ontwikkelingsachterstand/verstandelijke beperking (VB) is een van de belangrijkste redenen voor verwijzing naar de kinderarts en/of klinisch geneticus. De meeste ernstige vormen zijn genetisch bepaald. Naar schatting wordt de meerderheid verklaard door de novo genmutaties en chromosoomafwijkingen. Wanneer de patiënt geen klinisch herkenbaar beeld heeft, wordt doorgaans eerst chromosomenonderzoek met array-analyse ingezet. Wanneer er wel een klinisch herkenbaar beeld is, vindt gericht DNA-onderzoek van vaak meerdere genen plaats. Op indicatie vindt screenend metabool onderzoek plaats. Indien bovengenoemde onderzoeken geen diagnose opleveren, komt een deel van de patiënten sinds kort in aanmerking voor exoom-sequencing, waarmee de coderende delen van vrijwel alle genen tegelijkertijd onderzocht worden. De eerste diagnostische studies, bij patiënten zonder klinisch herkenbaar beeld en met een normale uitslag van de array-analyse, laten zien dat de opbrengst van dit onderzoek tussen de 16 en 55% ligt. Naast mutaties in bekende genen, gaat het hierbij ook om mutaties in nieuwe (kandidaat-) genen voor VB. Op korte termijn zal het tevens mogelijk worden om in de data verkregen met exoom-sequencing veranderingen in het aantal kopieën van (gedeelten van) chromosomen betrouwbaar te detecteren, waardoor in de nabije toekomst arrayanalyse als onderzoek van eerste keuze zal komen te vervallen. Het grote voordeel hiervan is dat met één test zowel chromosoomafwijkingen als monogene afwijkingen opgespoord kunnen worden, hoewel men zich wel moet realiseren dat ook met deze test niet alle genetische afwijkingen opgespoord kunnen worden. Het is daarnaast van belang om vóór aanvraag van het onderzoek expliciet de kans op detectie van onbekende varianten of toevalsbevindingen te bespreken.
Literatuur
1.
go back to reference Heber R. A manual on terminology and classification in mental retardation. Am J Ment Defic. 1959;Suppl 64:1–111.PubMed Heber R. A manual on terminology and classification in mental retardation. Am J Ment Defic. 1959;Suppl 64:1–111.PubMed
2.
go back to reference Heber R. Modifications in the manual on terminology and classification in mental retardation. Am J Ment Defic. 1961;65:499–500.PubMed Heber R. Modifications in the manual on terminology and classification in mental retardation. Am J Ment Defic. 1961;65:499–500.PubMed
3.
go back to reference Schalock RL, Luckasson RA, Shogren KA, et al. The renaming of mental retardation: understanding the change to the term intellectual disability. Intellect Dev Disabil. 2007;45:116–24.PubMedCrossRef Schalock RL, Luckasson RA, Shogren KA, et al. The renaming of mental retardation: understanding the change to the term intellectual disability. Intellect Dev Disabil. 2007;45:116–24.PubMedCrossRef
4.
go back to reference Schalock RL, Borthwick-Duffy SA, Bradley VJ, et al. Intellectual disability: Definition, classification, and systems of supports. Vol. 11.Washington: American Association on Intellectual and Developmental Disabilities, 2010. Schalock RL, Borthwick-Duffy SA, Bradley VJ, et al. Intellectual disability: Definition, classification, and systems of supports. Vol. 11.Washington: American Association on Intellectual and Developmental Disabilities, 2010.
7.
go back to reference Ropers HH. Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet. 2010; 11:161–87.PubMedCrossRef Ropers HH. Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet. 2010; 11:161–87.PubMedCrossRef
8.
go back to reference Ras M, Woittiez I, Kempen H van, et al. Steeds meer verstandelijk gehandicapten? Ontwikkelingen in vraag en gebruik van zorg voor verstandelijk gehandicapten 1998–2008. Den Haag: Sociaal en Cultureel Planbureau, 2010. Ras M, Woittiez I, Kempen H van, et al. Steeds meer verstandelijk gehandicapten? Ontwikkelingen in vraag en gebruik van zorg voor verstandelijk gehandicapten 1998–2008. Den Haag: Sociaal en Cultureel Planbureau, 2010.
9.
go back to reference Karnebeek CD van, Scheper FY, Abeling NG, et al. Etiology of mental retardation in children referred to a tertiary care center: a prospective study. Am J Ment Retard. 2005;110:253–67.PubMedCrossRef Karnebeek CD van, Scheper FY, Abeling NG, et al. Etiology of mental retardation in children referred to a tertiary care center: a prospective study. Am J Ment Retard. 2005;110:253–67.PubMedCrossRef
10.
go back to reference Stevenson RE, Procopio-Allen AM, Schroer RJ, Collins JS. Genetic syndromes among individuals with mental retardation. Am J Med Genet A. 2003; 123:29–32.CrossRef Stevenson RE, Procopio-Allen AM, Schroer RJ, Collins JS. Genetic syndromes among individuals with mental retardation. Am J Med Genet A. 2003; 123:29–32.CrossRef
11.
go back to reference Rauch A, Hoyer J, Guth S, et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A. 2006;140:2063–74.PubMedCrossRef Rauch A, Hoyer J, Guth S, et al. Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. Am J Med Genet A. 2006;140:2063–74.PubMedCrossRef
12.
go back to reference Buggenhout GJ van, Ravenswaaij-Arts C van, Mieloo H, et al. Dysmorphology and mental retardation: molecular cytogenetic studies in dysmorphic mentally retarded patients. Ann Genet. 2001;44:89–92.PubMedCrossRef Buggenhout GJ van, Ravenswaaij-Arts C van, Mieloo H, et al. Dysmorphology and mental retardation: molecular cytogenetic studies in dysmorphic mentally retarded patients. Ann Genet. 2001;44:89–92.PubMedCrossRef
13.
go back to reference Michelson DJ, Shevell MI, Sherr EH, et al. Evidence report: Genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2011;77:1629–35.PubMedCrossRef Michelson DJ, Shevell MI, Sherr EH, et al. Evidence report: Genetic and metabolic testing on children with global developmental delay: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2011;77:1629–35.PubMedCrossRef
14.
go back to reference Karnebeek CD van, Jansweijer MC, Leenders AG, et al. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet. 2005;13:6–25.PubMedCrossRef Karnebeek CD van, Jansweijer MC, Leenders AG, et al. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet. 2005;13:6–25.PubMedCrossRef
15.
go back to reference Moog U. The outcome of diagnostic studies on the etiology of mental retardation: considerations on the classification of the causes. Am J Med Genet A. 2005;137:228–31.PubMedCrossRef Moog U. The outcome of diagnostic studies on the etiology of mental retardation: considerations on the classification of the causes. Am J Med Genet A. 2005;137:228–31.PubMedCrossRef
16.
go back to reference Hochstenbach P. Cytogenetische diagnostiek bij kinderen met een onverklaarde verstandelijke handicap. 50 jaar onderzoek naar oorzaken van verstandelijke handicaps. Capita Selecta. De Werkgroep ter bestudering van somatische oorzaken van zwakzinnigheid 2008. p. 80–91. Hochstenbach P. Cytogenetische diagnostiek bij kinderen met een onverklaarde verstandelijke handicap. 50 jaar onderzoek naar oorzaken van verstandelijke handicaps. Capita Selecta. De Werkgroep ter bestudering van somatische oorzaken van zwakzinnigheid 2008. p. 80–91.
17.
go back to reference Knight SJ, Regan R, Nicod A, et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet. 1999;354: 1676–81.PubMedCrossRef Knight SJ, Regan R, Nicod A, et al. Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet. 1999;354: 1676–81.PubMedCrossRef
18.
go back to reference Koolen DA, Nillesen WM, Versteeg MH, et al. Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). J Med Genet. 2004;41:892–9.PubMedCrossRef Koolen DA, Nillesen WM, Versteeg MH, et al. Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). J Med Genet. 2004;41:892–9.PubMedCrossRef
19.
go back to reference Crotwell PL, Hoyme HE. Advances in whole-genome genetic testing: from chromosomes to microarrays. Curr Probl Pediatr Adolesc Health Care. 2012;42:47–73.PubMedCrossRef Crotwell PL, Hoyme HE. Advances in whole-genome genetic testing: from chromosomes to microarrays. Curr Probl Pediatr Adolesc Health Care. 2012;42:47–73.PubMedCrossRef
20.
go back to reference Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.PubMedCentralPubMedCrossRef Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.PubMedCentralPubMedCrossRef
21.
go back to reference Hochstenbach R, Binsbergen E van, Engelen J, et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet. 2009;52:161–9.PubMedCrossRef Hochstenbach R, Binsbergen E van, Engelen J, et al. Array analysis and karyotyping: workflow consequences based on a retrospective study of 36,325 patients with idiopathic developmental delay in the Netherlands. Eur J Med Genet. 2009;52:161–9.PubMedCrossRef
22.
go back to reference Slavotinek AM. Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet. 2008;124:1–17.PubMedCrossRef Slavotinek AM. Novel microdeletion syndromes detected by chromosome microarrays. Hum Genet. 2008;124:1–17.PubMedCrossRef
23.
go back to reference Kleefstra T, Smidt M, Banning MJ, et al. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet. 2005;42:299–306.PubMedCrossRef Kleefstra T, Smidt M, Banning MJ, et al. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet. 2005;42:299–306.PubMedCrossRef
24.
go back to reference Kleefstra T, Zelst-Stams WA van, Nillesen WM, et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet. 2009;46:598–606.PubMedCrossRef Kleefstra T, Zelst-Stams WA van, Nillesen WM, et al. Further clinical and molecular delineation of the 9q subtelomeric deletion syndrome supports a major contribution of EHMT1 haploinsufficiency to the core phenotype. J Med Genet. 2009;46:598–606.PubMedCrossRef
25.
go back to reference Willemsen MH, Fernandez BA, Bacino CA, et al. Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. Eur J Hum Genet. 2010;18:429–35.PubMedCrossRef Willemsen MH, Fernandez BA, Bacino CA, et al. Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. Eur J Hum Genet. 2010;18:429–35.PubMedCrossRef
26.
go back to reference Zweier M, Gregor A, Zweier C, et al. Mutations in MEF2 C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum Mutat. 2010;31:722–33.PubMedCrossRef Zweier M, Gregor A, Zweier C, et al. Mutations in MEF2 C from the 5q14.3q15 microdeletion syndrome region are a frequent cause of severe mental retardation and diminish MECP2 and CDKL5 expression. Hum Mutat. 2010;31:722–33.PubMedCrossRef
27.
go back to reference Sagoo GS, Butterworth AS, Sanderson S, et al. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects. Genet Med. 2009;11: 139–46.PubMedCrossRef Sagoo GS, Butterworth AS, Sanderson S, et al. Array CGH in patients with learning disability (mental retardation) and congenital anomalies: updated systematic review and meta-analysis of 19 studies and 13,926 subjects. Genet Med. 2009;11: 139–46.PubMedCrossRef
28.
29.
go back to reference Piton A, Redin C, Mandel JL. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am J Hum Genet. 2013;93:368–83.PubMedCentralPubMedCrossRef Piton A, Redin C, Mandel JL. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am J Hum Genet. 2013;93:368–83.PubMedCentralPubMedCrossRef
30.
go back to reference Leonard H, Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev. 2002;8:117–34.PubMedCrossRef Leonard H, Wen X. The epidemiology of mental retardation: challenges and opportunities in the new millennium. Ment Retard Dev Disabil Res Rev. 2002;8:117–34.PubMedCrossRef
31.
32.
go back to reference Hoischen A, Bon BW van, Gilissen C, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet. 2010;42:483–5.PubMedCrossRef Hoischen A, Bon BW van, Gilissen C, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet. 2010;42:483–5.PubMedCrossRef
33.
go back to reference Hoischen A, Bon BW van, Rodríguez-Santiago B, et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet. 2011;43:729–31.PubMedCrossRef Hoischen A, Bon BW van, Rodríguez-Santiago B, et al. De novo nonsense mutations in ASXL1 cause Bohring-Opitz syndrome. Nat Genet. 2011;43:729–31.PubMedCrossRef
34.
go back to reference Sirmaci A, Spiliopoulos M, Brancati F, et al. Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am J Hum Genet. 2011;89:289–94.PubMedCentralPubMedCrossRef Sirmaci A, Spiliopoulos M, Brancati F, et al. Mutations in ANKRD11 cause KBG syndrome, characterized by intellectual disability, skeletal malformations, and macrodontia. Am J Hum Genet. 2011;89:289–94.PubMedCentralPubMedCrossRef
35.
go back to reference Santen GW, Aten E, Sun Y, et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat Genet. 2012;44: 379–80.PubMedCrossRef Santen GW, Aten E, Sun Y, et al. Mutations in SWI/SNF chromatin remodeling complex gene ARID1B cause Coffin-Siris syndrome. Nat Genet. 2012;44: 379–80.PubMedCrossRef
37.
go back to reference Vissers LE, Ligt J de, Gilissen C, et al. A de novo paradigm for mental retardation. Nat Genet. 2010;42:1109–12.PubMedCrossRef Vissers LE, Ligt J de, Gilissen C, et al. A de novo paradigm for mental retardation. Nat Genet. 2010;42:1109–12.PubMedCrossRef
38.
go back to reference Ligt J de, Willemsen MH, Bon BW van, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367: 1921–9.PubMedCrossRef Ligt J de, Willemsen MH, Bon BW van, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367: 1921–9.PubMedCrossRef
39.
go back to reference Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe nonsyndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.PubMedCrossRef Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe nonsyndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–82.PubMedCrossRef
40.
go back to reference Najmabadi H, Hu H, Garshasbi M, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478:57–63.PubMedCrossRef Najmabadi H, Hu H, Garshasbi M, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478:57–63.PubMedCrossRef
41.
go back to reference Iqbal Z, Shahzad M, Vissers LE, et al. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype. Eur J Hum Genet. 2013;21: 844–9.PubMedCrossRef Iqbal Z, Shahzad M, Vissers LE, et al. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype. Eur J Hum Genet. 2013;21: 844–9.PubMedCrossRef
42.
go back to reference Murdock DR, Clark GD, Bainbridge MN, et al. Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria. Am J Med Genet A. 2011;155:2071–7.CrossRef Murdock DR, Clark GD, Bainbridge MN, et al. Whole-exome sequencing identifies compound heterozygous mutations in WDR62 in siblings with recurrent polymicrogyria. Am J Med Genet A. 2011;155:2071–7.CrossRef
43.
go back to reference Nederlandse Vereniging voor Kindergeneeskunde. Evidence-based richtlijn voor de initiële etiologische diagnostiek bij kinderen met een globale ontwikkelingsachterstand/mentale retardatie. Utrecht: NVK, 2005. Nederlandse Vereniging voor Kindergeneeskunde. Evidence-based richtlijn voor de initiële etiologische diagnostiek bij kinderen met een globale ontwikkelingsachterstand/mentale retardatie. Utrecht: NVK, 2005.
44.
go back to reference Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.PubMedCrossRef Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet. 2011;12:745–55.PubMedCrossRef
45.
go back to reference Willemsen MH, Vissers LE, Willemsen MA, et al. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet. 2012;49:179–83.PubMedCrossRef Willemsen MH, Vissers LE, Willemsen MA, et al. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet. 2012;49:179–83.PubMedCrossRef
46.
go back to reference Willemsen MH, Nijhof B, Fenckova M, et al. GATAD2B loss-of-function mutations cause a recognisable syndrome with intellectual disability and are associated with learning deficits and synaptic undergrowth in Drosophila. J Med Genet. 2013; 50:507–14.PubMedCrossRef Willemsen MH, Nijhof B, Fenckova M, et al. GATAD2B loss-of-function mutations cause a recognisable syndrome with intellectual disability and are associated with learning deficits and synaptic undergrowth in Drosophila. J Med Genet. 2013; 50:507–14.PubMedCrossRef
47.
go back to reference Poirier K, Lebrun N, Broix L, et al. Mutations in TUBG1, DYNC1H1, KIF5 C and KIF2 A cause malformations of cortical development and microcephaly. Nat Genet. 2013;45:639–47.PubMedCrossRef Poirier K, Lebrun N, Broix L, et al. Mutations in TUBG1, DYNC1H1, KIF5 C and KIF2 A cause malformations of cortical development and microcephaly. Nat Genet. 2013;45:639–47.PubMedCrossRef
48.
go back to reference Veeramah KR, Johnstone L, Karafet TM, et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54:1270–81.PubMedCrossRef Veeramah KR, Johnstone L, Karafet TM, et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia. 2013;54:1270–81.PubMedCrossRef
49.
go back to reference Huisman SA, Redeker EJ, Maas SM, et al. High rate of mosaicism in individuals with Cornelia de Lange syndrome. J Med Genet. 2013;50:339–44.PubMedCrossRef Huisman SA, Redeker EJ, Maas SM, et al. High rate of mosaicism in individuals with Cornelia de Lange syndrome. J Med Genet. 2013;50:339–44.PubMedCrossRef
50.
go back to reference Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14:307–20.PubMedCrossRef Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14:307–20.PubMedCrossRef
51.
go back to reference Pagnamenta AT, Lise S, Harrison V, et al. Exome sequencing can detect pathogenic mosaic mutations present at low allele frequencies. J Hum Genet. 2012;57:70–2.PubMedCrossRef Pagnamenta AT, Lise S, Harrison V, et al. Exome sequencing can detect pathogenic mosaic mutations present at low allele frequencies. J Hum Genet. 2012;57:70–2.PubMedCrossRef
Metagegevens
Titel
Exoom-sequencing in de diagnostiek van ontwikkelingsachterstand/verstandelijke beperking
Auteurs
Mw. dr. M.H. Willemsen
mw. dr. T. Kleefstra
mw. dr. H.G. Yntema
Publicatiedatum
01-01-2014
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Tijdschrift voor Kindergeneeskunde / Uitgave 1/2014
Print ISSN: 0376-7442
Elektronisch ISSN: 1875-6840
DOI
https://doi.org/10.1007/s12456-014-0005-x

Andere artikelen Uitgave 1/2014

Tijdschrift voor Kindergeneeskunde 1/2014 Naar de uitgave

BookReview

boekbespreking