CC BY-NC-ND 4.0 · Sleep Sci 2018; 11(03): 137-140
DOI: 10.5935/1984-0063.20180026
SHORT COMMUNICATIONS

Peripheral body temperature impairment in individuals with type 1 diabetes mellitus

Mark Thomaz Ugliara Barone
1   Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Grupo Multidisciplinar de Desenvolvimento e Ritmos Biológicos (GMDRB) - São Paulo - SP - Brazil.
2   ADJ Diabetes Brasil, Research and Education - São Paulo - SP - Brazil.
,
Bruno Gonçalves
1   Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Grupo Multidisciplinar de Desenvolvimento e Ritmos Biológicos (GMDRB) - São Paulo - SP - Brazil.
,
Luiz Menna-Barreto
1   Escola de Artes, Ciências e Humanidades da Universidade de São Paulo, Grupo Multidisciplinar de Desenvolvimento e Ritmos Biológicos (GMDRB) - São Paulo - SP - Brazil.
› Author Affiliations

Objective: The aim of the present study was to evaluate the peripheral temperature rhythmicity and control in individuals with type 1 diabetes mellitus.

Methods: Twelve non-obese adults (20-40 years old) with type 1 diabetes mellitus (T1D) and eight control individuals, matched for age and BMI, wore a wrist temperature recorder for 10 consecutive days. Recorded data were aggregated to calculate M10 (ten hours of highest temperature) and L5 (five hours of lowest temperature) of wrist temperature values for both groups.

Results: Mean wrist temperature and M10 were not different when comparing the groups. The wrist temperature amplitude was reduced in the T1D group (p=0.039), due to a higher L5 (p=0.038).

Discussion: While the higher L5 observed in T1D could be explained by less efficient heat dissipation, the amplitude flattening coincides with that observed in elderly.

Funding: Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) (Grant: 2008/11026-2).




Publication History

Received: 26 December 2017

Accepted: 24 July 2018

Article published online:
13 October 2023

© 2023. Brazilian Sleep Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • REFERENCES

  • 1 American Diabetes Association. Standards of medical care in diabetes 2016. Diabetes Care. 2016;39(Suppl 1):S1-112.
  • 2 Ramos-Lobo AM, Buonfiglio DC, Cipolla-Neto J. Streptozotocin-induced diabetes disrupts the body temperature daily rhythm in rats. Diabetol Metab Syndr. 2015;7:39.
  • 3 Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature (Austin). 2016;3(1):119-45.
  • 4 Weinert D. Circadian temperature variation and ageing. Ageing Res Rev. 2010;9(1):51-60.
  • 5 Areas R, Duarte L, Menna-Barreto L. Comparative analysis of rhythmic parameters of the body temperature in humans measured with thermistors and digital thermometers. Biol Rhythm Res. 2006;37(5):419-24.
  • 6 Sarabia JA, Rol MA, Mendiola P, Madrid JA. Circadian rhythm of wrist temperature in normal-living subjects: a candidate of new index of the circadian system. Physiol Behav. 2008;95(4):570-80.
  • 7 Harper DG, Volicer L, Stopa EG, McKee AC, Nitta M, Satlin A. Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am J Geriatr Psychiatry. 2005;13(5):359-68.
  • 8 Colwell CS. Circadian Medicine. New York: Wiley-Blackwell; 2015.
  • 9 Zhu Y, Jiang Z, Xiao G, Cheng S, Wen Y, Wan C. Circadian rhythm disruption was observed in hand, foot, and mouth disease patients. Medicine (Baltimore). 2015;94(10):e601.
  • 10 Oldham MA, Lee HB, Desan PH. Circadian Rhythm Disruption in the Critically Ill: An Opportunity for Improving Outcomes. Crit Care Med. 2016;44(1):207-17.
  • 11 Carrier J, Monk TH, Buysse DJ, Kupfer DJ. Amplitude reduction of the circadian temperature and sleep rhythms in the elderly. Chronobiol Int. 1996;13(5):373-86.
  • 12 Van Someren EJ. More than a marker: interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiol Int. 2000;17(3):313-54.
  • 13 Barone MTU, Wey D, Schorr F, Franco DR, Carra MK, Lorenzi-Filho G, et al. Sleep and glycemic control in type 1 diabetes. Arch Endocrinol Metab. 2015;59(1):71-8.
  • 14 Witting W, Kwa IH, Eikelenboom P, Mirmiran M, Swaab DF. Alterations in the circadian rest-activity rhythm in aging and Alzheimers disease. Biol Psychiatry. 1990;27(6):563-72.
  • 15 Gon.alves BS, Cavalcanti PR, Tavares GR, Campos TF, Araujo JF. Nonparametric methods in actigraphy: An update. Sleep Sci. 2014;7(3):158-64.
  • 16 Ortiz-Tudela E, Martinez-Nicolas A, D.az-Mardomingo C, Garc.a- Herranz S, Pereda-P.rez I, Valencia A, et al. The characterization of biological rhythms in mild cognitive impairment. Biomed Res Int. 2014;2014:524971.
  • 17 Batinga H, Martinez-Nicolas A, Zornoza-Moreno M, S.nchez-Solis M, Larqu. E, Mond.jar MT, et al. Ontogeny and aging of the distal skin temperature rhythm in humans. Age (Dordr). 2015;37(2):29.
  • 18 Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813-20.
  • 19 Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 2003;26(5):1589-96.
  • 20 Barone MT, Menna-Barreto L. Diabetes and sleep: a complex cause-andeffect relationship. Diabetes Res Clin Pract. 2011;91(2):129-37.