Thromb Haemost 2010; 104(04): 639-701
DOI: 10.1160/TH10-03-0174
Review Article
Schattauer GmbH

The role of CD154 in haematopoietic development

Tom Seijkens
1   Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
,
David Engel
1   Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
,
Marc Tjwa
2   Laboratory of Vascular Hematology, Center for Molecular Medicine, University of Frankfurt, Germany
3   Vesalius Research Center (VRC), KU Leuven, VIB, Belgium
,
Esther Lutgens
1   Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands
4   Institute for Molecular Cardiovascular Research (IMCAR), University Hospital Aachen, Medical Faculty, Rheinisch-Westfalische Technische Hochschule (RWTH) Aachen, Germany
› Author Affiliations
Further Information

Publication History

Received: 11 March 2010

Accepted after minor revision: 26 May 2010

Publication Date:
24 November 2017 (online)

Summary

CD154 (CD40 ligand, CD40L, gp139) is a co-stimulatory molecule of the tumour necrosis factor (TNF) family. CD154 was originally discovered on T-cells, and was found to be involved in many immune responses including B-cell activation, isotype switching, and germinal centre formation. The expression of CD154 on other haematopoietic and nonhaematopoietic cells suggests that CD154 has other functions as well. Indeed, CD154 is involved in many pathological processes, including inflammatory and autoimmune diseases. Genetic studies in patients and mice taught us that CD154 might affect haematopoietic stem and progenitor cells (HSPCs), T-cell, B-cell, and dendritic cell (DC) progenitors. Moreover, the development of specific T-cell and DC subsets critically depends on CD154. Furthermore, CD154 is involved in lymphoid malignancies. Here we highlight the role of CD154 in the developing lymphoid system, including the biology of HSPC and lineage-committed T-cell, B-cell, NK, and DC progenitors. Further, the clinical and therapeutic implications of CD154 interactions in lymphopoiesis will be discussed.

 
  • References

  • 1 Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 1994; 76: 959-962.
  • 2 Villa A, Notarangelo LD, Di Santo JP. et al. Organization of the human CD40L gene: implications for molecular defects in X chromosome-linked hyper-IgM syndrome and prenatal diagnosis. Proc Natl Acad Sci USA 1994; 91: 2110-2114.
  • 3 Schonbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 2001; 58: 4-43.
  • 4 Brenner B, Koppenhoefer U, Grassme H. et al. Evidence for a novel function of the CD40 ligand as a signalling molecule in T-lymphocytes. FEBS Lett 1997; 417: 301-306.
  • 5 El Fakhry Y, Alturaihi H, Diallo D. et al. Critical role of lipid rafts in CD154-mediated T cell signaling. Eur J Immunol 2009; 40: 770-779.
  • 6 Andre P, Prasad KS, Denis CV. et al. CD40L stabilizes arterial thrombi by a beta3 integrin--dependent mechanism. Nat Med 2002; 8: 247-252.
  • 7 Foy TM, Aruffo A, Bajorath J. et al. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14: 591-617.
  • 8 Andre P, Nannizzi-Alaimo L, Prasad SK. et al. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation 2002; 106: 896-899.
  • 9 Matthies KM, Newman JL, Hodzic A, Wingett DG. Differential regulation of soluble and membrane CD40L proteins in T cells. Cell Immunol 2006; 241: 47-58.
  • 10 Heeschen C, Dimmeler S, Hamm CW. et al. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003; 348: 1104-1111.
  • 11 Cipollone F, Ferri C, Desideri G. et al. Preprocedural level of soluble CD40L is predictive of enhanced inflammatory response and restenosis after coronary angioplasty. Circulation 2003; 108: 2776-2782.
  • 12 Cipollone F, Chiarelli F, Davi G. et al. Enhanced soluble CD40 ligand contributes to endothelial cell dysfunction in vitro and monocyte activation in patients with diabetes mellitus: effect of improved metabolic control. Diabetologia 2005; 48: 1216-1224.
  • 13 Engel D, Seijkens T, Poggi M. et al. The immunobiology of CD154-CD40-TRAF interactions in atherosclerosis. Semin Immunol 2009; 21: 308-312.
  • 14 Hristov M, Gumbel D, Lutgens E. et al. Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury. Circulation 2010; 121: 315-324.
  • 15 Lievens D, Eijgelaar WJ, Biessen EA. et al. The multi-functionality of CD40L and its receptor CD40 in atherosclerosis. Thromb Haemost 2009; 102: 206-214.
  • 16 Wang Y, Kelly CG, Karttunen JT. et al. CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 2001; 15: 971-983.
  • 17 Brodeur SR, Angelini F, Bacharier LB. et al. C4b-binding protein (C4BP) activates B cells through the CD40 receptor. Immunity 2003; 18: 837-848.
  • 18 Lazarevic V, Myers AJ, Scanga CA. et al. CD40, but not CD40L, is required for the optimal priming of T cells and control of aerosol M. tuberculosis infection. Immunity 2003; 19: 823-835.
  • 19 Mehlhop PD, van de Rijn M, Brewer JP. et al. CD40L, but not CD40, is required for allergen-induced bronchial hyperresponsiveness in mice. Am J Respir Cell Mol Biol 2000; 23: 646-651.
  • 20 Lutgens E, Gorelik L, Daemen MJ. et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med 1999; 5: 1313-1316.
  • 21 Lutgens E, Cleutjens KB, Heeneman S. et al. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc Natl Acad Sci USA 2000; 97: 7464-7469.
  • 22 Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res 2001; 89: 1092-1103.
  • 23 Peters AL, Stunz LL, Bishop GA. CD40 and autoimmunity: the dark side of a great activator. Semin Immunol 2009; 21: 293-300.
  • 24 Lutgens E, Poggi M, Weber C. CD40L-CD40 fuel ignites obesity. Thromb Haemost 2010; 103: 694-695.
  • 25 Missiou A, Wolf D, Platzer I. et al. CD40L induces inflammation and adipogenesis in adipose cells--a potential link between metabolic and cardiovascular disease. Thromb Haemost 2010; 103: 788-796.
  • 26 Mach F, Schonbeck U, Sukhova GK. et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998; 394: 200-203.
  • 27 Lutgens E, Lievens D, Beckers L. et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an anti-inflammatory profile. J Exp Med 2010; 207: 391-404.
  • 28 Donners MM, Beckers L, Lievens D. et al. The CD40-TRAF6 axis is the key regulator of the CD40/CD40L system in neointima formation and arterial remodeling. Blood 2008; 111: 4596-4604.
  • 29 Hassan GS, Merhi Y, Mourad WM. CD154 and its receptors in inflammatory vascular pathologies. Trends Immunol 2009; 30: 165-172.
  • 30 de Fougerolles AR, Koteliansky VE. Regulation of monocyte gene expression by the extracellular matrix and its functional implications. Immunol Rev 2002; 186: 208-220.
  • 31 Qiang YW, Kitagawa M, Higashi M. et al. Activation of mitogen-activated protein kinase through alpha5/beta1 integrin is required for cell cycle progression of B progenitor cell line, Reh, on human marrow stromal cells. Exp Hematol 2000; 28: 1147-1157.
  • 32 Leveille C, Bouillon M, Guo W. et al. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J Biol Chem 2007; 282: 5143-5151.
  • 33 Zirlik A, Maier C, Gerdes N. et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 2007; 115: 1571-1580.
  • 34 Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci USA 2003; 100: 12367-12371.
  • 35 Notarangelo LD, Hayward AR. X-linked immunodeficiency with hyper-IgM (XHIM). Clin Exp Immunol 2000; 120: 399-405.
  • 36 Winkelstein JA, Marino MC, Ochs H. et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore) 2003; 82: 373-384.
  • 37 Imai K, Shimadzu M, Kubota T. et al. Female hyper IgM syndrome type 1 with a chromosomal translocation disrupting CD40LG. Biochim Biophys Acta 2006; 1762: 335-340.
  • 38 Schwarz BA, Bhandoola A. Trafficking from the bone marrow to the thymus: a prerequisite for thymopoiesis. Immunol Rev 2006; 209: 47-57.
  • 39 Dunn RJ, Luedecker CJ, Haugen HS. et al. Thymic overexpression of CD40 ligand disrupts normal thymic epithelial organization. J Histochem Cytochem 1997; 45: 129-141.
  • 40 Galy AH, Spits H. CD40 is functionally expressed on human thymic epithelial cells. J Immunol 1992; 149: 775-782.
  • 41 Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity 2009; 30: 646-655.
  • 42 Barrett NA, Austen KF. Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 2009; 31: 425-437.
  • 43 Soroosh P, Doherty TA. Th9 and allergic disease. Immunology 2009; 127: 450-458.
  • 44 Pilon C, Levast B, Meurens F. et al. CD40 engagement strongly induces CD25 expression on porcine dendritic cells and polarizes the T cell immune response toward Th1. Mol Immunol 2009; 46: 437-447.
  • 45 Jenkins SJ, Perona-Wright G, MacDonald AS. Full development of Th2 immunity requires both innate and adaptive sources of CD154. J Immunol 2008; 180: 8083-8092.
  • 46 Straw AD, MacDonald AS, Denkers EY. et al. CD154 plays a central role in regulating dendritic cell activation during infections that induce Th1 or Th2 responses. J Immunol 2003; 170: 727-734.
  • 47 Perona-Wright G, Jenkins SJ, O’Connor RA. et al. A pivotal role for CD40-mediated IL-6 production by dendritic cells during IL-17 induction in vivo. J Immunol 2009; 182: 2808-2815.
  • 48 Iezzi G, Sonderegger I, Ampenberger F. et al. CD40-CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc Natl Acad Sci USA 2009; 106: 876-881.
  • 49 Guiducci C, Valzasina B, Dislich H. et al. CD40/CD40L interaction regulates CD4+CD25+ T reg homeostasis through dendritic cell-produced IL-2. Eur J Immunol 2005; 35: 557-567.
  • 50 Smook ML, Heeringa P, Damoiseaux JG. et al. Leukocyte CD40L deficiency affects the CD25(+) CD4 T cell population but does not affect atherosclerosis. Atherosclerosis 2005; 183: 275-282.
  • 51 Malek TR. The main function of IL-2 is to promote the development of T regulatory cells. J Leukoc Biol 2003; 74: 961-965.
  • 52 Spence PJ, Green EA. Foxp3+ regulatory T cells promiscuously accept thymic signals critical for their development. Proc Natl Acad Sci USA 2008; 105: 973-978.
  • 53 Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol 2003; 3: 253-257.
  • 54 Schuurhuis DH, Fu N, Ossendorp F. et al. Ins and outs of dendritic cells. Int Arch Allergy Immunol 2006; 140: 53-72.
  • 55 Blom B, Spits H. Development of human lymphoid cells. Annu Rev Immunol 2006; 24: 287-320.
  • 56 Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 2007; 7: 19-30.
  • 57 Naik SH. Demystifying the development of dendritic cell subtypes, a little. Immunol Cell Biol 2008; 86: 439-452.
  • 58 Flores-Romo L, Bjorck P, Duvert V. et al. CD40 ligation on human cord blood CD34+ hematopoietic progenitors induces their proliferation and differentiation into functional dendritic cells. J Exp Med 1997; 185: 341-349.
  • 59 Ouaaz F, Arron J, Zheng Y. et al. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 2002; 16: 257-270.
  • 60 Kobayashi T, Walsh PT, Walsh MC. et al. TRAF6 is a critical factor for dendritic cell maturation and development. Immunity 2003; 19: 353-363.
  • 61 Wong BR, Josien R, Lee SY. et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 1997; 186: 2075-2080.
  • 62 Romani N, Gruner S, Brang D. et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83-93.
  • 63 Santiago-Schwarz F, Belilos E, Diamond B. et al. TNF in combination with GMCSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J Leukoc Biol 1992; 52: 274-281.
  • 64 Zhou M, Gu L, Holden J. et al. CD40 ligand upregulates expression of the IL-3 receptor and stimulates proliferation of B-lineage acute lymphoblastic leukemia cells in the presence of IL-3. Leukemia 2000; 14: 403-411.
  • 65 Fu J, Liu Y, Zhang X. CD40 ligandization promotes IL-6 and Flt3 ligand production of bone marrow stromal cells. Zhonghua Xue Ye Xue Za Zhi 2002; 23: 585-587.
  • 66 Weiler M, Kachko L, Chaimovitz C. et al. CD40 ligation enhances IL-15 production by tubular epithelial cells. J Am Soc Nephrol 2001; 12: 80-87.
  • 67 Liu Z, Geboes K, Colpaert S. et al. IL-15 is highly expressed in inflammatory bowel disease and regulates local T cell-dependent cytokine production. J Immunol 2000; 164: 3608-3615.
  • 68 Avice MN, Demeure CE, Delespesse G. et al. IL-15 promotes IL-12 production by human monocytes via T cell-dependent contact and may contribute to IL-12-mediated IFN-gamma secretion by CD4+ T cells in the absence of TCR ligation. J Immunol 1998; 161: 3408-3415.
  • 69 Sartorius R, D’Apice L, Barba P. et al. Induction of human NK cell-mediated cytotoxicity by CD40 triggering on antigen presenting cells. Cell Immunol 2003; 221: 81-88.
  • 70 Tomihara K, Kato K, Masuta Y. et al. Gene transfer of the CD40-ligand to human dendritic cells induces NK-mediated antitumor effects against human carcinoma cells. Int J Cancer 2007; 120: 1491-1498.
  • 71 Rey J, Veuillen C, Vey N. et al. Natural killer and gammadelta T cells in haemato-logical malignancies: enhancing the immune effectors. Trends Mol Med 2009; 15: 275-284.
  • 72 Rudin CM, Thompson CB. B-cell development and maturation. Semin Oncol 1998; 25: 435-446.
  • 73 Duchosal MA. B-cell development and differentiation. Semin Hematol 1997; 34 (Suppl. 01) 2-12.
  • 74 Law CL, Wormann B, LeBien TW. Analysis of expression and function of CD40 on normal and leukemic human B cell precursors. Leukemia 1990; 4: 732-738.
  • 75 Saeland S, Duvert V, Caux C. et al. Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. Exp Hematol 1992; 20: 24-33.
  • 76 Saeland S, Duvert V, Moreau I. et al. Human B cell precursors proliferate and express CD23 after CD40 ligation. J Exp Med 1993; 178: 113-120.
  • 77 Larson AW, LeBien TW. Cross-linking CD40 on human B cell precursors inhibits or enhances growth depending on the stage of development and the IL costimulus. J Immunol 1994; 153: 584-594.
  • 78 Barker J, Verfaillie CM. A novel in vitro model of early human adult B lymphopoiesis that allows proliferation of pro-B cells and differentiation to mature B lymphocytes. Leukemia 2000; 14: 1614-1620.
  • 79 Fluckiger AC, Sanz E, Garcia-Lloret M. et al. In vitro reconstitution of human B-cell ontogeny: from CD34(+) multipotent progenitors to Ig-secreting cells. Blood 1998; 92: 4509-4520.
  • 80 Kothlow S, Morgenroth I, Tregaskes CA. et al. CD40 ligand supports the long-term maintenance and differentiation of chicken B cells in culture. Dev Comp Immunol 2008; 32: 1015-1026.
  • 81 Funakoshi S, Taub DD, Anver MR. et al. Immunologic and hematopoietic effects of CD40 stimulation after syngeneic bone marrow transplantation in mice. J Clin Invest 1997; 99: 484-491.
  • 82 Willimott S, Baou M, Naresh K. et al. CD154 induces a switch in pro-survival Bcl-2 family members in chronic lymphocytic leukaemia. Br J Haematol 2007; 138: 721-732.
  • 83 Wormann B, Gesner TG, Mufson RA. et al. Proliferative effect of interleukin-3 on normal and leukemic human B cell precursors. Leukemia 1989; 3: 399-404.
  • 84 Pandrau D, Saeland S, Duvert V. et al. Interleukin 4 inhibits in vitro proliferation of leukemic and normal human B cell precursors. J Clin Invest 1992; 90: 1697-1706.
  • 85 Karagogeos D, Rosenberg N, Wortis HH. Early arrest of B cell development in nude, X-linked immune-deficient mice. Eur J Immunol 1986; 16: 1125-1130.
  • 86 Sprent J, Bruce J. Physiology of B cells in mice with X-linked immunodeficiency. II. Influence of the thymus and mature T cells on B cell differentiation. J Exp Med 1984; 160: 335-340.
  • 87 Karagogeos D, Wortis HH. Thymus grafts induce B cell development in nude, X-linked immune deficient mice. Eur J Immunol 1987; 17: 141-144.
  • 88 Renard N, Duvert V, Blanchard D. et al. Activated CD4+ T cells induce CD40-dependent proliferation of human B cell precursors. J Immunol 1994; 152: 1693-1701.
  • 89 Nolte MA, Arens R, van Os R. et al. Immune activation modulates hematopoiesis through interactions between CD27 and CD70. Nat Immunol 2005; 6: 412-418.
  • 90 Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000; 100: 157-168.
  • 91 Lai AY, Kondo M. T and B lymphocyte differentiation from hematopoietic stem cell. Semin Immunol 2008; 20: 207-212.
  • 92 Lutgens E, Lievens D, Beckers L. et al. CD40 and its ligand in atherosclerosis. Trends Cardiovasc Med 2007; 17: 118-123.
  • 93 Hixon JA, Blazar BR, Anver MR. et al. Antibodies to CD40 induce a lethal cytokine cascade after syngeneic bone marrow transplantation. Biol Blood Marrow Transplant 2001; 7: 136-143.
  • 94 Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8: 290-301.
  • 95 Liaw L, Skinner MP, Raines EW. et al. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell migration to osteopontin in vitro. J Clin Invest 1995; 95: 713-724.
  • 96 Broxmeyer HE. Chemokines in hematopoiesis. Curr Opin Hematol 2008; 15: 49-58.
  • 97 Arai F, Hirao A, Suda T. Regulation of hematopoiesis and its interaction with stem cell niches. Int J Hematol 2005; 82: 371-376.
  • 98 Arai F, Hirao A, Ohmura M. et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149-161.
  • 99 Tjwa M, Sidenius N, Moura R. et al. Membrane-anchored uPAR regulates the proliferation, marrow pool size, engraftment, and mobilization of mouse hematopoietic stem/progenitor cells. J Clin Invest 2009; 119: 1008-1018.
  • 100 Kim KW, Cho ML, Kim HR. et al. Up-regulation of stromal cell-derived factor 1 (CXCL12) production in rheumatoid synovial fibroblasts through interactions with T lymphocytes: role of interleukin-17 and CD40L-CD40 interaction. Arthritis Rheum 2007; 56: 1076-1086.
  • 101 Kassmer SH, Niggemann B, Punzel M. et. Cytokine combinations differentially influence the SDF-1alpha-dependent migratory activity of cultivated murine hematopoietic stem and progenitor cells. Biol Chem 2008; 389: 863-872.
  • 102 Solanilla A, Dechanet J, El Andaloussi A. et al. CD40-ligand stimulates myelopoiesis by regulating flt3-ligand and thrombopoietin production in bone marrow stromal cells. Blood 2000; 95: 3758-3764.
  • 103 Wadhwa M, Thorpe R. Haematopoietic growth factors and their therapeutic use. Thromb Haemost 2008; 99: 863-873.
  • 104 Pyrovolaki K, Mavroudi I, Sidiropoulos P. et al. Increased expression of CD40 on bone marrow CD34+ hematopoietic progenitor cells in patients with systemic lupus erythematosus: contribution to Fas-mediated apoptosis. Arthritis Rheum 2009; 60: 543-552.
  • 105 Callard RE, Armitage RJ, Fanslow WC. et al. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today 1993; 14: 559-564.
  • 106 Subauste CS. CD154 and type-1 cytokine response: from hyper IgM syndrome to human immunodeficiency virus infection. J Infect Dis 2002; 185 (Suppl. 01) S83-89.
  • 107 Leiva LE, Junprasert J, Hollenbaugh D. et al. Central nervous system toxoplasmosis with an increased proportion of circulating gamma delta T cells in a patient with hyper-IgM syndrome. J Clin Immunol 1998; 18: 283-290.
  • 108 Jesus AA, Duarte AJ, Oliveira JB. Autoimmunity in hyper-IgM syndrome. J Clin Immunol 2008; 28 (Suppl. 01) S62-66.
  • 109 Herve M, Isnardi I, Ng YS. et al. CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J Exp Med 2007; 204: 1583-1593.
  • 110 Rathmell JC, Townsend SE, Xu JC. et al. Expansion or elimination of B cells in vivo: dual roles for CD40– and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell 1996; 87: 319-329.
  • 111 Ostenstad B, Giliani S, Mellbye OJ. et al. A boy with X-linked hyper-IgM syndrome and natural killer cell deficiency. Clin Exp Immunol 1997; 107: 230-234.
  • 112 Facchetti F, Appiani C, Salvi L. et al. Immunohistologic analysis of ineffective CD40-CD40 ligand interaction in lymphoid tissues from patients with X-linked immunodeficiency with hyper-IgM. Abortive germinal center cell reaction and severe depletion of follicular dendritic cells. J Immunol 1995; 154: 6624-6633.
  • 113 Kawabe T, Naka T, Yoshida K. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1994; 1: 167-178.
  • 114 Kasran A, Boon L, Wortel CH. et al. Safety and tolerability of antagonist anti-human CD40 Mab ch5D12 in patients with moderate to severe Crohn’s disease. Aliment Pharmacol Ther 2005; 22: 111-122.
  • 115 Howard LM, Miga AJ, Vanderlugt CL. et al. Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J Clin Invest 1999; 103: 281-290.
  • 116 Gruss HJ, Herrmann F, Gattei V. et al. CD40/CD40 ligand interactions in normal, reactive and malignant lympho-hematopoietic tissues. Leuk Lymphoma 1997; 24: 393-422.
  • 117 Hock BD, McKenzie JL, Patton NW. et al. Circulating levels and clinical significance of soluble CD40 in patients with hematologic malignancies. Cancer 2006; 106: 2148-2157.
  • 118 Blair PJ, Riley JL, Harlan DM. et al. CD40 ligand (CD154) triggers a short-term CD4(+) T cell activation response that results in secretion of immunomodula-tory cytokines and apoptosis. J Exp Med 2000; 191: 651-660.
  • 119 Khubchandani S, Czuczman MS, Hernandez-Ilizaliturri FJ. Dacetuzumab, a humanized mAb against CD40 for the treatment of hematological malignancies. Curr Opin Investig Drugs 2009; 10: 579-587.
  • 120 Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150-1157.
  • 121 Renaudineau Y, Devauchelle-Pensec V, Hanrotel C. et al. Monoclonal anti-CD20 antibodies: mechanisms of action and monitoring of biological effects. Joint Bone Spine 2009; 76: 458-463.