Semin Neurol 2014; 34(02): 225-234
DOI: 10.1055/s-0034-1381739
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Clinical Trials: Past, Current, and Future for Atypical Parkinsonian Syndromes

Richard M. Tsai
1   Department of Neurology, University of California San Francisco, San Francisco, California
,
Adam L. Boxer
1   Department of Neurology, University of California San Francisco, San Francisco, California
› Author Affiliations
Further Information

Publication History

Publication Date:
25 June 2014 (online)

Abstract

There are currently no effective Food and Drug Administration-approved treatments for atypical parkinsonian disorders such as progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, or multiple system atrophy. Previous treatment trials for these disorders were focused on symptomatic support and did not affect disease progression. Recent breakthroughs in neuropathology and pathophysiology have allowed a new understanding of these disorders and investigation into potentially disease modifying therapies. Randomized, placebo-controlled clinical trials of these disorders will be reviewed here. Suggestions for future therapeutic targets and clinical trial design (with a focus on progressive supranuclear palsy) will also be provided.

 
  • References

  • 1 Wenning GK, Litvan I, Tolosa E. Milestones in atypical and secondary parkinsonisms. Mov Disord 2011; 26 (6) 1083-1095
  • 2 Steele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy. A heterogeneous degeneration involving the brainstem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 1964; 10: 333-359
  • 3 Williams DR, de Silva R, Paviour DC , et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson's syndrome and PSP-parkinsonism. Brain 2005; 128 (Pt 6) 1247-1258
  • 4 Williams DR, Lees AJ. Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges. Lancet Neurol 2009; 8 (3) 270-279
  • 5 Lang AE. Treatment of progressive supranuclear palsy and corticobasal degeneration. Mov Disord 2005; 20 (Suppl. 12) S83-S91
  • 6 Klawans Jr HL, Ringel SP. Observations on the efficacy of L-dopa in progressive supranuclear palsy. Eur Neurol 1971; 5 (2) 115-129
  • 7 Kompoliti K, Goetz CG, Litvan I, Jellinger K, Verny M. Pharmacological therapy in progressive supranuclear palsy. Arch Neurol 1998; 55 (8) 1099-1102
  • 8 Birdi S, Rajput AH, Fenton M , et al. Progressive supranuclear palsy diagnosis and confounding features: report on 16 autopsied cases. Mov Disord 2002; 17 (6) 1255-1264
  • 9 Ruberg M, Javoy-Agid F, Hirsch E , et al. Dopaminergic and cholinergic lesions in progressive supranuclear palsy. Ann Neurol 1985; 18 (5) 523-529
  • 10 Javoy-Agid F. Cholinergic and peptidergic systems in PSP. J Neural Transm Suppl 1994; 42: 205-218
  • 11 Levy R, Ruberg M, Herrero MT , et al. Alterations of GABAergic neurons in the basal ganglia of patients with progressive supranuclear palsy: an in situ hybridization study of GAD67 messenger RNA. Neurology 1995; 45 (1) 127-134
  • 12 Litvan I, Gomez C, Atack JR , et al. Physostigmine treatment of progressive supranuclear palsy. Ann Neurol 1989; 26 (3) 404-407
  • 13 Fabbrini G, Barbanti P, Bonifati V , et al. Donepezil in the treatment of progressive supranuclear palsy. Acta Neurol Scand 2001; 103 (2) 123-125
  • 14 Litvan I, Phipps M, Pharr VL, Hallett M, Grafman J, Salazar A. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology 2001; 57 (3) 467-473
  • 15 Liepelt I, Gaenslen A, Godau J , et al. Rivastigmine for the treatment of dementia in patients with progressive supranuclear palsy: clinical observations as a basis for power calculations and safety analysis. Alzheimers Dement 2010; 6 (1) 70-74
  • 16 Daniele A, Moro E, Bentivoglio AR. Zolpidem in progressive supranuclear palsy. N Engl J Med 1999; 341 (7) 543-544
  • 17 Poujois A, Vidailhet M, Trocello JM, Bourdain F, Gaymard B, Rivaud-Péchoux S. Effect of gabapentin on oculomotor control and parkinsonism in patients with progressive supranuclear palsy. Eur J Neurol 2007; 14 (9) 1060-1062
  • 18 Rebeiz JJ, Kolodny EH, Richardson Jr EP. Corticodentatonigral degeneration with neuronal achromasia: a progressive disorder of late adult life. Trans Am Neurol Assoc 1967; 92: 23-26
  • 19 Lee SE, Rabinovici GD, Mayo MC , et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 2011; 70 (2) 327-340
  • 20 Ling H, O'Sullivan SS, Holton JL , et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 2010; 133 (Pt 7) 2045-2057
  • 21 Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002; 125 (Pt 4) 861-870
  • 22 Mathew R, Bak TH, Hodges JR. Diagnostic criteria for corticobasal syndrome: a comparative study. J Neurol Neurosurg Psychiatry 2012; 83 (4) 405-410
  • 23 Armstrong MJ, Litvan I, Lang AE , et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013; 29 (80) 498-503
  • 24 Maruyama M, Shimada H, Suhara T , et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 2013; 79 (6) 1094-1108
  • 25 Xia CF, Arteaga J, Chen G , et al. [(18)F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimers Dement 2013; 9 (6) 666-676
  • 26 Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell 1992; 3 (10) 1141-1154
  • 27 Khlistunova I, Biernat J, Wang Y , et al. Inducible expression of tau repeat domain in cell models of tauopathy: aggregation is toxic to cells but can be reversed by inhibitor drugs. J Biol Chem 2006; 281 (2) 1205-1214
  • 28 Van der Jeugd A, Hochgräfe K, Ahmed T , et al. Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human tau. Acta Neuropathol 2012; 123 (6) 787-805
  • 29 Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 1993; 10 (6) 1089-1099
  • 30 Brunden KR, Trojanowski JQ, Lee VM. Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 2009; 8 (10) 783-793
  • 31 Roberson ED, Scearce-Levie K, Palop JJ , et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model. Science 2007; 316 (5825) 750-754
  • 32 Abbondante S, Baglietto-Vargas D, Rodriguez-Ortiz CJ, Estrada-Hernandez T, Medeiros R, Laferla FM. Genetic ablation of tau mitigates cognitive impairment induced by type 1 diabetes. Am J Pathol 2014; 184 (3) 819-826
  • 33 Morris M, Hamto P, Adame A, Devidze N, Masliah E, Mucke L. Age-appropriate cognition and subtle dopamine-independent motor deficits in aged tau knockout mice. Neurobiol Aging 2013; 34 (6) 1523-1529
  • 34 Wischik CM, Harrington CR, Storey JM. Tau-aggregation inhibitor therapy for Alzheimer's disease. Biochem Pharmacol 2014; 88 (4) 529-539
  • 35 US National Institute of Health Clinical Trials Registry. 2010. Available at: http://clinicaltrials.gov/show/NCT00703677 . Accessed February 21, 2014
  • 36 Höglinger GU, Huppertz HJ, Wagenpfeil S , et al; TAUROS MRI Investigators. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov Disord 2014; 29 (4) 479-487
  • 37 Tolosa E, Litvan I, Höglinger GU , et al; TAUROS Investigators. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov Disord 2014; 29 (4) 470-478
  • 38 Min SW, Cho SH, Zhou Y , et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010; 67 (6) 953-966
  • 39 DeVos SL, Goncharoff DK, Chen G , et al. Antisense reduction of tau in adult mice protects against seizures. J Neurosci 2013; 33 (31) 12887-12897
  • 40 Pride M, Seubert P, Grundman M, Hagen M, Eldridge J, Black RS. Progress in the active immunotherapeutic approach to Alzheimer's disease: clinical investigations into AN1792-associated meningoencephalitis. Neurodegener Dis 2008; 5 (3-4) 194-196
  • 41 Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 2010; 224 (2) 472-485
  • 42 Asuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci 2007; 27 (34) 9115-9129
  • 43 Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci 2010; 30 (49) 16559-16566
  • 44 FierceBiotech. AC Immune begins first trial of a tau-targeting Alzheimer's vaccine. 2014. Available at: http://www.fiercevaccines.com/story/ac-immune-begins-first-trial-tau-targeting-alzheimers-vaccine/2014-01-13 . Accessed February 21, 2014
  • 45 Chai X, Wu S, Murray TK , et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem 2011; 286 (39) 34457-34467
  • 46 Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 2011; 118 (4) 658-667
  • 47 Yanamandra K, Kfoury N, Jiang H , et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 2013; 80 (2) 402-414
  • 48 Higuchi M, Lee VM, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. Neuromolecular Med 2002; 2 (2) 131-150
  • 49 Brunden KR, Ballatore C, Lee VM, Smith III AB, Trojanowski JQ. Brain-penetrant microtubule-stabilizing compounds as potential therapeutic agents for tauopathies. Biochem Soc Trans 2012; 40 (4) 661-666
  • 50 Barten DM, Fanara P, Andorfer C , et al. Hyperdynamic microtubules, cognitive deficits, and pathology are improved in tau transgenic mice with low doses of the microtubule-stabilizing agent BMS-241027. J Neurosci 2012; 32 (21) 7137-7145
  • 51 US National Institute of Health Clinical Trials Registry. 2014. Available at: http://clinicaltrials.gov/ct2/show/NCT01966666?term=tpi+287&rank . Accessed February 21, 2014
  • 52 Stamelou M, de Silva R, Arias-Carrión O , et al. Rational therapeutic approaches to progressive supranuclear palsy. Brain 2010; 133 (Pt 6) 1578-1590
  • 53 Stamelou M, Pilatus U, Reuss A , et al. In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab 2009; 29 (4) 861-870
  • 54 Swerdlow RH, Golbe LI, Parks JK , et al. Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. J Neurochem 2000; 75 (4) 1681-1684
  • 55 Albers DS, Swerdlow RH, Manfredi G , et al. Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Exp Neurol 2001; 168 (1) 196-198
  • 56 Chirichigno JW, Manfredi G, Beal MF, Albers DS. Stress-induced mitochondrial depolarization and oxidative damage in PSP cybrids. Brain Res 2002; 951 (1) 31-35
  • 57 Caparros-Lefebvre D, Elbaz A ; Caribbean Parkinsonism Study Group. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Lancet 1999; 354 (9175) 281-286
  • 58 Abdin AA, Hamouda HE. Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism. Neuropharmacology 2008; 55 (8) 1340-1346
  • 59 Stamelou M, Reuss A, Pilatus U , et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord 2008; 23 (7) 942-949
  • 60 US National Institute of Health Clinical Trials Registry. 2013. Available at: http://clinicaltrials.gov/show/NCT00382824. Accessed February 21, 2014
  • 61 US National Institute of Health Clinical Trials Registry. 2009. http://clinicaltrials.gov/show/NCT00605930 . Accessed February 21, 2014
  • 62 McKeith IG, Dickson DW, Lowe J , et al; Consortium on DLB. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005; 65 (12) 1863-1872
  • 63 Piggott MA, Marshall EF, Thomas N , et al. Striatal dopaminergic markers in dementia with Lewy bodies, Alzheimer's and Parkinson's diseases: rostrocaudal distribution. Brain 1999; 122 (Pt 8) 1449-1468
  • 64 Klein JC, Eggers C, Kalbe E , et al. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010; 74 (11) 885-892
  • 65 Tiraboschi P, Hansen LA, Alford M , et al. Early and widespread cholinergic losses differentiate dementia with Lewy bodies from Alzheimer disease. Arch Gen Psychiatry 2002; 59 (10) 946-951
  • 66 Lippa CF, Duda JE, Grossman M , et al; DLB/PDD Working Group. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007; 68 (11) 812-819
  • 67 Guo JL, Lee VM. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat Med 2014; 20 (2) 130-138
  • 68 Masliah E, Rockenstein E, Mante M , et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS ONE 2011; 6 (4) e19338
  • 69 Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011; 122 (2) 187-204
  • 70 McKeith I, Del Ser T, Spano P , et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet 2000; 356 (9247) 2031-2036
  • 71 Wesnes KA, McKeith IG, Ferrara R , et al. Effects of rivastigmine on cognitive function in dementia with Lewy bodies: a randomised placebo-controlled international study using the cognitive drug research computerised assessment system. Dement Geriatr Cogn Disord 2002; 13 (3) 183-192
  • 72 Beversdorf DQ, Warner JL, Davis RA, Sharma UK, Nagaraja HN, Scharre DW. Donepezil in the treatment of dementia with lewy bodies. Am J Geriatr Psychiatry 2004; 12 (5) 542-544
  • 73 Mori E, Ikeda M, Kosaka K ; Donepezil-DLB Study Investigators. Donepezil for dementia with Lewy bodies: a randomized, placebo-controlled trial. Ann Neurol 2012; 72 (1) 41-52
  • 74 Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I ; Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA 2004; 291 (3) 317-324
  • 75 Reisberg B, Doody R, Stöffler A, Schmitt F, Ferris S, Möbius HJ ; Memantine Study Group. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med 2003; 348 (14) 1333-1341
  • 76 Aarsland D, Ballard C, Walker Z , et al. Memantine in patients with Parkinson's disease dementia or dementia with Lewy bodies: a double-blind, placebo-controlled, multicentre trial. Lancet Neurol 2009; 8 (7) 613-618
  • 77 Emre M, Tsolaki M, Bonuccelli U , et al; 11018 Study Investigators. Memantine for patients with Parkinson's disease dementia or dementia with Lewy bodies: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2010; 9 (10) 969-977
  • 78 Cummings JL, Street J, Masterman D, Clark WS. Efficacy of olanzapine in the treatment of psychosis in dementia with Lewy bodies. Dement Geriatr Cogn Disord 2002; 13 (2) 67-73
  • 79 Kurlan R, Cummings J, Raman R, Thal L ; Alzheimer's Disease Cooperative Study Group. Quetiapine for agitation or psychosis in patients with dementia and parkinsonism. Neurology 2007; 68 (17) 1356-1363
  • 80 Cummings J, Isaacson S, Mills R , et al. Pimavanserin for patients with Parkinson's disease psychosis: a randomised, placebo-controlled phase 3 trial. Lancet 2014; 383 (9916) 533-540
  • 81 Stefanova N, Bücke P, Duerr S, Wenning GK. Multiple system atrophy: an update. Lancet Neurol 2009; 8 (12) 1172-1178
  • 82 Freeman R, Landsberg L, Young J. The treatment of neurogenic orthostatic hypotension with 3,4-DL-threodihydroxyphenylserine: a randomized, placebo controlled crossover trial. Neurology 1999; 53: 2151-2157
  • 83 US National Institute of Health Clinical Trials Registry. 2013. Available at: http://clinicaltrials.gov/show/NCT00782340 . Accessed February 21, 2014
  • 84 MedScape. FDA Clears Droxidopa for Neurogenic Orthostatic Hypotension. 2014. Available at: http://www.medscape.com/viewarticle/820786 . Accessed February 21, 2014
  • 85 Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN ; NNIPPS Study Group. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 2009; 132 (Pt 1) 156-171
  • 86 Dodel R, Spottke A, Gerhard A , et al. Minocycline 1-year therapy in multiple-system-atrophy: effect on clinical symptoms and [(11)C] (R)-PK11195 PET (MEMSA-trial). Mov Disord 2010; 25 (1) 97-107
  • 87 Schwid SR, Cutter GR. Futility studies: spending a little to save a lot. Neurology 2006; 66 (5) 626-627
  • 88 Schoenfeld DA, Cudkowicz M. Design of phase II ALS clinical trials. Amyotroph Lateral Scler 2008; 9 (1) 16-23
  • 89 Collins B, Constant J, Kaba S, Barclay CL, Mohr E. Dementia with Lewy bodies: implications for clinical trials. Clin Neuropharmacol 2004; 27 (6) 281-292