skip to main content
research-article

Identifying faces across variations in lighting: Psychophysics and computation

Published:19 May 2008Publication History
Skip Abstract Section

Abstract

Humans have the ability to identify objects under varying lighting conditions with extraordinary accuracy. We investigated the behavioral aspects of this ability and compared it to the performance of the illumination cones (IC) model of Belhumeur and Kriegman [1998]. In five experiments, observers learned 10 faces under a small subset of illumination directions. We then tested observers' recognition ability under different illuminations. Across all experiments, recognition performance was found to be dependent on the distance between the trained and tested illumination directions. This effect was modulated by the nature of the trained illumination directions. Generalizations from frontal illuminations were different than generalizations from extreme illuminations. Similarly, the IC model was also sensitive to whether the trained images were near-frontal or extreme. Thus, we find that the nature of the images in the training set affects the accuracy of an object's representation under variable lighting for both humans and the model. Beyond this general correspondence, the microstructure of the generalization patterns for both humans and the IC model were remarkably similar, suggesting that the two systems may employ related algorithms.

References

  1. Atick, J. J., Griffin, P. A., and Redlich, A. N. 1996. Statistical approach to shape from shading: Reconstruction of three-dimensional face surfaces from single two-dimensional images. Neural Computation 8, 6, 1321--1340.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Belhumeur, P. N. and Kriegman, D. J. 1998. What is the set of images of an object under all possible illumination conditions? Int. J. Comput. Vision 28, 3, 245--260.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. 1997. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19, 7, 711--720.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Biederman, I. 1987. Recognition-by-components: A theory of human image understanding. Psychological Review 94, 2, 115--147.]]Google ScholarGoogle ScholarCross RefCross Ref
  5. Biederman, I. and Gerhardstein, P. C. 1993. Recognizing depth-rotated objects: Evidence and conditions for three-dimensional viewpoint invariance. Journal of Experimental Psychology: Human Perception and Performance 19, 6, 1162--1182.]]Google ScholarGoogle ScholarCross RefCross Ref
  6. Binford, T. O. 1971. Visual perception by computer. In IEEE Conference on Systems and Control. Miami, FL.]]Google ScholarGoogle Scholar
  7. Braje, W. L. 2003. Illumination encoding in face recognition: Effect of position shift. Journal of Vision 3, 2, 161--170.]]Google ScholarGoogle ScholarCross RefCross Ref
  8. Braje, W. L., Kersten, D., Tarr, M. J., and Troje, N. F. 1998. Illumination effects in face recognition. Psychobiology 26, 4 (Aug.), 371--380.]]Google ScholarGoogle Scholar
  9. Braje, W. L., Legge, G. E., and Kersten, D. 2000. Invariant recognition of natural objects in the presence of shadows. Perception 29, 4, 383--398.]]Google ScholarGoogle ScholarCross RefCross Ref
  10. Fukushima, K. 2000. Active and adaptive vision: Neural network models. In Biologically Motivated Computer Vision, S.-W. Lee, H. H. Bülthoff, and T. Poggio, Eds. Vol. 1811. Springer-Verlag, New York. 623--634.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Georghiades, A. S., Kriegman, D. J., and Belhumeur, P. N. 1998. Illumination cones for recognition under variable lighting: Faces. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog. 52--59.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Georghiades, A. S., Belhumeur, P. N., and Kriegman, D. J. 2001. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 23, 6 (June), 643--660.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Gross, R., Baker, S., Matthews, I., and Kanade, T. 2004. Face recognition across pose and illumination. In Handbook of Face Recognition, S. Z. Li and A. K. Jain, Eds. Springer-Verlag, New York.]]Google ScholarGoogle Scholar
  14. Hallinan, P. W. 1994. A low-dimensional representation of human faces for arbitrary lighting conditions. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog. 995--999.]]Google ScholarGoogle ScholarCross RefCross Ref
  15. Hallinan, P. W., Gordon, G., Yuille, A. L., Giblin, P., and Mumford, D. 1999. Two- and Three-Dimensional Patterns of the Face. A.K. Peters, Natick, MA.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hayward, W. G. and Tarr, M. J. 1997. Testing conditions for viewpoint invariance in object recognition. Journal of Experimental Psychology: Human Perception and Performance 23, 5 (Oct.), 1511--1521.]]Google ScholarGoogle ScholarCross RefCross Ref
  17. Horn, B. K. P. 1975. Obtaining Shape from Shading Information. McGraw-Hill, New York.]]Google ScholarGoogle Scholar
  18. Johnston, A., Hill, H., and Carman, N. 1992. Recognizing faces: Effects of lighting direction, inversion, and brightness reversal. Perception 21, 3, 365--375.]]Google ScholarGoogle ScholarCross RefCross Ref
  19. Kardos, L. 1934. Ding und Schatten. Zeitschrift für Psychologie 23.]]Google ScholarGoogle Scholar
  20. Kersten, D., Knill, D. C., Mamassian, P., and Bülthoff, I. 1996. Illusory motion from shadows. Nature (London) 379, 31.]]Google ScholarGoogle ScholarCross RefCross Ref
  21. Kersten, D., Mamassian, P., and Knill, D. C. 1997. Moving cast shadows induce apparent motion in depth. Perception 26, 2, 171--192.]]Google ScholarGoogle ScholarCross RefCross Ref
  22. Kersten, D., Mamassian, P., and Yuille, A. 2004. Object perception as Bayesian inference. Annual Review of Psychology 55, 271--304.]]Google ScholarGoogle ScholarCross RefCross Ref
  23. Lades, M., Vorbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R. P., and Konen, W. 1993. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers 42, 300--311.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Logothetis, N. K. and Pauls, J. 1995. Psychophysical and physiological evidence for viewer-centered object representation in the primate. Cerebral Cortex 5, 3, 270--288.]]Google ScholarGoogle ScholarCross RefCross Ref
  25. Lowe, D. G. 2000. Towards a computational model for object recognition in IT cortex. In Biologically Motivated Computer Vision, S.-W. Lee, H. H. Bülthoff, and T. Poggio, Eds. Vol. 1811. Springer-Verlag, New York, 20--31.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, San Francisco, CA.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Marr, D. and Nishihara, H. K. 1978. Representation and recognition of the spatial organization of three-dimensional shapes. In Proc. R. Soc. of Lond. B, 200. 269--294.]]Google ScholarGoogle ScholarCross RefCross Ref
  28. Moore, C. and Cavanagh, P. 1998. Recovery of 3D volume from 2-tone images of novel objects. Cognition 67, 1-2 (July), 45--71.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Moses, Y., Adini, Y., and Ullman, S. 1994. Face recognition: The problem of compensating for changes in illumination direction. In Computer Vision - ECCV '94, J.-O. Eklundh, Ed. Lecture Notes in Computer Science, vol. 800. Springer-Verlag, New York, 286--296.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Moses, Y., Ullman, S., and Edelman, S. 1996. Generalization to novel images in upright and inverted faces. Perception 25, 443--462.]]Google ScholarGoogle ScholarCross RefCross Ref
  31. Ramachandran, V. S. 1988. Perception of shape from shading. Nature (London) 331, 14, 163--166.]]Google ScholarGoogle ScholarCross RefCross Ref
  32. Riesenhuber, M. and Poggio, T. 2000. CBF: A new framework for object categorization in cortex. In Biologically Motivated Computer Vision, S.-W. Lee, H. H. Bülthoff, and T. Poggio, Eds. Vol. 1811. Springer-Verlag, New York. 1--9.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sanocki, T., Bowyer, K. W., Heath, M. D., and Sarkar, S. 1998. Are edges sufficient for object recognition? Journal of Experimental Psychology: Human Perception and Performance 24, 1, 340--349.]]Google ScholarGoogle ScholarCross RefCross Ref
  34. Tarr, M. J. 1995. Rotating objects to recognize them: A case study of the role of viewpoint dependency in the recognition of three-dimensional objects. Psychonomic Bulletin and Review 2, 1, 55--82.]]Google ScholarGoogle ScholarCross RefCross Ref
  35. Tarr, M. J. and Gauthier, I. 1998. Do viewpoint-dependent mechanisms generalize across members of a class? Cognition 67, 1-2 (July), 71--108.]]Google ScholarGoogle Scholar
  36. Tarr, M. J., Kersten, D., and Bülthoff, H. H. 1998a. Why the visual system might encode the effects of illumination. Vision Research 38, 15--16 (Aug.), 2259--2275.]]Google ScholarGoogle ScholarCross RefCross Ref
  37. Tarr, M. J., Williams, P., Hayward, W. G., and Gauthier, I. 1998b. Three-dimensional object recognition is viewpoint-dependent. Nature Neuroscience 1, 4 (Aug.), 275--277.]]Google ScholarGoogle ScholarCross RefCross Ref
  38. Turk, M. and Pentland, A. 1991a. Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 1, 71--86.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Turk, M. and Pentland, A. 1991b. Face recognition using eigenfaces. In Proc. IEEE Conf. on Comp. Vision and Patt. Recog. 586--591.]]Google ScholarGoogle Scholar
  40. Ullman, S. and Sali, E. 2000. Object classification using a fragment-based representation. In Biologically Motivated Computer Vision, S.-W. Lee, H. H. Bülthoff, and T. Poggio, Eds. Vol. 1811. Springer-Verlag, New York. 73--87.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ullman, S., Vidal-Naquet, M., and Sali, E. 2002. Visual features of intermediate complexity and their use in classification. Nature Neuroscience 5, 682--687.]]Google ScholarGoogle ScholarCross RefCross Ref
  42. Vuong, Q. C., Peissig, J. J., Harrison, M. C., and Tarr, M. J. 2005. The role of surface pigmentation for recognition revealed by contrast reversal in faces and greebles. Vision Research 45, 10, 1213--1223.]]Google ScholarGoogle ScholarCross RefCross Ref
  43. Williams, P. and Tarr, M. J. 2001. RSVP: Experimental control software for MacOS {online}.]]Google ScholarGoogle Scholar
  44. Zhang, L. and Samaras, D. 2006. Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans. Pattern Anal. Mach. Intell. 28, 3 (Mar.), 351--363.]] Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Zhou, S. K. and Chellappa, R. 2005. Image-based face recognition under illumination and pose variations. Journal of the Optical Society of America A 22, 217--229.]]Google ScholarGoogle ScholarCross RefCross Ref
  46. Zhou, S. K., Aggarwal, G., Chellappa, R., and Jacobs, D. W. 2007. Appearance characterization of linear lambertian objects, generalized photometric stereo, and illumination-invariant face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2 (Feb.), 230--245.]] Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Identifying faces across variations in lighting: Psychophysics and computation

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Applied Perception
        ACM Transactions on Applied Perception  Volume 5, Issue 2
        May 2008
        120 pages
        ISSN:1544-3558
        EISSN:1544-3965
        DOI:10.1145/1279920
        Issue’s Table of Contents

        Copyright © 2008 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 19 May 2008
        • Accepted: 1 May 2007
        • Revised: 1 November 2006
        • Received: 1 April 2006
        Published in tap Volume 5, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader