Skip to main content
Published Online:https://doi.org/10.1027/1614-2241.4.1.22

Abstract. Latent growth modeling has been a topic of intense interest during the past two decades. Most theoretical and applied work has employed first-order growth models, in which a single manifest variable serves as indicator of trait level at each time of measurement. In the current paper, we concentrate on issues regarding second-order growth models, which have multiple indicators at each time of measurement. With multiple indicators, tests of factorial invariance of parameters across times of measurement can be tested. We conduct such tests using two sets of data, which differ in the extent to which factorial invariance holds, and evaluate longitudinal confirmatory factor, latent growth curve, and latent difference score models. We demonstrate that, if factorial invariance fails to hold, choice of indicator used to identify the latent variable can have substantial influences on the characterization of patterns of growth, strong enough to alter conclusions about growth. We also discuss matters related to the scaling of growth factors and conclude with recommendations for practice and for future research.

References

  • Bentler, P.M. (1990). Comparative fit indices in structural equation models. Psychological Bulletin, 107, 238– 246 First citation in articleCrossrefGoogle Scholar

  • Browne, M.W. , Cudeck, R. (1993). Alternative ways of assessing model fit. In K.A. Bollen & J.S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage First citation in articleGoogle Scholar

  • Chan, D. (1988). The conceptualization and analysis of change over time: An integrative approach incorporating longitudinal mean and covariance structures analysis (LMACS) and multiple indicator latent growth modeling (MLGM). Organizational Research Methods, 1, 421– 483 First citation in articleCrossrefGoogle Scholar

  • Dolan, C.V. , Molenaar, P.C.M. (1994). Testing specific hypotheses concerning latent group differences in multi-group covariance structure analysis with structured means. Multivariate Behavioral Research, 29, 203– 222 First citation in articleCrossrefGoogle Scholar

  • Drasgow, F. (1987). Study of the measurement bias of two standardized psychological tests. Journal of Applied Psychology, 72, 19– 29 First citation in articleCrossrefGoogle Scholar

  • Duncan, T.E. , Duncan, S.C. , Strycker, L.A. , Li, F. , Alpert, A. (1999). An introduction to latent variable growth curve modeling: Concepts, issues, and applications . Mahwah, NJ: Erlbaum First citation in articleGoogle Scholar

  • Ferrer, E. , McArdle, J.J. (2003). Alternative structural models for multivariate longitudinal data analysis. Structural Equation Modeling, 10, 493– 524 First citation in articleCrossrefGoogle Scholar

  • Ferrer, E. , McArdle, J.J. (2004). An experimental analysis of dynamic hypotheses about cognitive abilities and achievement from childhood to early adulthood. Developmental Psychology, 40, 935– 952 First citation in articleCrossrefGoogle Scholar

  • Ferrer, E. , McArdle, J.J. , Shawitz, B.A. , Holahan, J.N. , Marchione, K. , Shawitz, S.E. (2007). Longitudinal models of developmental dynamics between reading and cognition from childhood to adolescence. Developmental Psychology, 43, 1460– 1473 First citation in articleCrossrefGoogle Scholar

  • Hancock, G.R. , Kuo, W. , Lawrence, F.R. (2001). An illustration of second-order latent growth models. Structural Equation Modeling, 8, 470– 489 First citation in articleCrossrefGoogle Scholar

  • Hansen, W. , Graham, J. (1991). Preventing alcohol, marijuana, and cigarette use among adolescents: Peer pressure resistance training versus establishing conservative norms. Preventive Medicine, 20, 414– 430 First citation in articleCrossrefGoogle Scholar

  • Harter, S. (1988). The self-perception profile for adolescents . Unpublished manual, University of Denver, Denver, CO First citation in articleGoogle Scholar

  • Horn, J.L. , McArdle, J.J (1992). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18, 117– 144 First citation in articleCrossrefGoogle Scholar

  • Horn, J.L. , McArdle, J.J. , Mason, R. (1983). When is invariance not invariant: A practical scientist's look at the ethereal concept of factor invariance. Southern Psychologist, 1, 179– 188 First citation in articleGoogle Scholar

  • McArdle, J.J. (1988). Dynamic but structural equation modeling of repeated measures data. In J.R. Nesselroade & R.B. Cattell (Eds.), Handbook of multivariate experimental psychology (2nd ed., pp. 561-614). New York: Plenum First citation in articleCrossrefGoogle Scholar

  • McArdle, J.J. (2001). A latent difference score approach to longitudinal dynamic structural analysis. In R. Cudeck, S. du Toit, & Sörbom (Eds.), Structural equation modeling: Present and future. A festschrift in honor of Karl Jöreskog (pp. 341-380). Lincolnwood, IL: Scientific Software International First citation in articleGoogle Scholar

  • McArdle, J.J. , Ferrer-Caja, E. , Hamagami, F. , Woodcock, R.W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38(1), 115– 142 First citation in articleCrossrefGoogle Scholar

  • McArdle, J.J. , Hamagami, F. (2001). Linear dynamic analyses of incomplete longitudinal data. In L. Collins & A. Sayer (Eds.), New methods for the analysis of change (pp. 139-175). Washington, DC: American Psychological Association First citation in articleGoogle Scholar

  • McArdle, J.J. , Woodcock, R.W. (1997). Expanding test-retest designs to include developmental time-lag components. Psychological Methods, 2, 403– 435 First citation in articleCrossrefGoogle Scholar

  • McDonald, R.P. (1985). Factor analysis and related methods . Hillsdale, NJ: Erlbaum First citation in articleGoogle Scholar

  • Meredith, W.M. (1964). Notes on factorial invariance. Psychometrika, 29, 177– 185 First citation in articleCrossrefGoogle Scholar

  • Meredith, W.M. (1993). Measurement invariance, factor analysis, and factorial invariance. Psychometrika, 58, 525– 543 First citation in articleCrossrefGoogle Scholar

  • Muthén, B.O. , Muthén, L.K. (2005). Mplus user's guide . Los Angeles: Author First citation in articleGoogle Scholar

  • Oort, F.J. (2001). Three-mode models for multivariate longitudinal data. British Journal of Mathematical and Statistical Psychology, 54, 49– 78 First citation in articleCrossrefGoogle Scholar

  • Sayer, A.G. , Cumsille, P.E. (2001). Second-order latent growth models. In L.M. Collins & A.G. Sayer (Eds.), New methods for the analysis of change (pp. 179-200). Washington, DC: American Psychological Association First citation in articleCrossrefGoogle Scholar

  • Sayer, A.G. , Willett, J.B. (1998). A cross-domain model for growth in adolescent alcohol expectancies. Multivariate Behavioral Research, 33, 509– 543 First citation in articleCrossrefGoogle Scholar

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461– 464 First citation in articleCrossrefGoogle Scholar

  • Stoel, R.D. , van denWittenboer, G. , Hox, J.J. (2004). Methodological issues in the application of the latent growth curve model. In K. van Montfort, H. Oud, & A. Satorra (Eds.), Recent developments on structural equation modeling: Theory and applications (pp. 241-262). Amsterdam: Kluwer Academic Press First citation in articleCrossrefGoogle Scholar

  • Tisak, J. , Meredith, W. (1990). Descriptive and associative developmental models. In A. von Eye (Ed.), Statistical methods in longitudinal research (Vol. 2, pp. 387-406). Boston: Academic Press First citation in articleGoogle Scholar

  • Tucker, L.R. , Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1– 10 First citation in articleCrossrefGoogle Scholar

  • Widaman, K.F. , Reise, S.P. (1997). Exploring the measurement invariance of psychological instruments: Applications in the substance use domain. In K.J. Bryant, M. Windle, & S.G. West (Eds.), The science of prevention: Methodological advances from alcohol and substance abuse research (pp. 281-324). Washington, DC: American Psychological Association First citation in articleGoogle Scholar