skip to main content
research-article
Public Access

Field-of-View Restriction to Reduce VR Sickness Does Not Impede Spatial Learning in Women

Published:11 May 2021Publication History
Skip Abstract Section

Abstract

Women are more likely to experience virtual reality (VR) sickness than men, which could pose a major challenge to the mass market success of VR. Because VR sickness often results from a visual-vestibular conflict, an effective strategy to mitigate conflict is to restrict the user’s field-of-view (FOV) during locomotion. Sex differences in spatial cognition have been well researched, with several studies reporting that men exhibit better spatial navigation performance in desktop three-dimensional environments than women. However, additional research suggests that this sex difference can be mitigated by providing a larger FOV as this increases the availability of landmarks, which women tend to rely on more than men. Though FOV restriction is already a widely used strategy for VR headsets to minimize VR sickness, it is currently not well understood if it impedes spatial learning in women due to decreased availability of landmarks. Our study (n=28, 14 men and 14 women) found that a dynamic FOV restrictor was equally effective in reducing VR sickness in both sexes, and no sex differences in VR sickness incidence were found. Our study did find a sex difference in spatial learning ability, but an FOV restrictor did not impede spatial learning in either sex.

References

  1. Majed Al Zayer, Isayas B. Adhanom, Paul MacNeilage, and Eelke Folmer. 2019. The effect of field-of-view restriction on sex bias in VR sickness and spatial navigation performance. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. 1--12.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Majed Al Zayer, Paul MacNeilage, and Eelke Folmer. 2020. Virtual locomotion: A survey. IEEE Trans. Vis. Comput. Graph. 26, 6 (2020), 2315--2334. DOI:10.1109/TVCG.2018.2887379Google ScholarGoogle ScholarCross RefCross Ref
  3. Robert S. Astur, Maria L. Ortiz, and Robert J. Sutherland. 1998. A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behav. Brain Res. 93, 1--2 (1998), 185--190.Google ScholarGoogle ScholarCross RefCross Ref
  4. Shaowen Bardzell. 2010. Feminist HCI: Taking stock and outlining an agenda for design. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1301--1310.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Jiwan Bhandari, Paul MacNeilage, and Eelke Folmer. 2018. Teleportation without spatial disorientation using optical flow cues. In Proceedings of Graphics Interface 2018 (GI’18). Canadian Human-Computer Communications Society/Société canadienne du dialogue humain-machine, 162--167. DOI:https://doi.org/10.20380/GI2018.22Google ScholarGoogle Scholar
  6. Frank Biocca. 1992. Will simulation sickness slow down the diffusion of virtual environment technology? Presence Teleoperat. Virt. Environ. 1, 3 (1992), 334--343.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Mark Bolas, J. Adam Jones, Ian McDowall, and Evan Suma. 2017. Dynamic field of view throttling as a means of improving user experience in head mounted virtual environments. US Patent No. 9,645,395.Google ScholarGoogle Scholar
  8. Jelte E Bos, Sjoerd C. de Vries, Martijn L. van Emmerik, and Eric L. Groen. 2010. The effect of internal and external fields of view on visually induced motion sickness. Appl. Ergon. 41, 4 (2010), 516--521.Google ScholarGoogle ScholarCross RefCross Ref
  9. Doug Bowman, David Koller, and Larry F. Hodges. 1997. Travel in immersive virtual environments: An evaluation of viewpoint motion control techniques. In Proceedings of the Virtual Reality Annual International Symposium. IEEE, 45--52.Google ScholarGoogle Scholar
  10. Neil Burgess. 2006. Spatial memory: How egocentric and allocentric combine. Trends Cogn. Sci. 10, 12 (2006), 551--557.Google ScholarGoogle ScholarCross RefCross Ref
  11. Lucia A. Cherep, Alex F. Lim, Jonathan W. Kelly, Devi Acharya, Alfredo Velasco, Emanuel Bustamante, Alec G. Ostrander, and Stephen B. Gilbert. 2020. Spatial cognitive implications of teleporting through virtual environments.J. Exp. Psychol.: Appl. 26, 3 (2020), 480--492. DOI:https://doi.org/10.1037/xap0000263Google ScholarGoogle ScholarCross RefCross Ref
  12. Stacy A. Clemes and Peter A. Howarth. 2005. The menstrual cycle and susceptibility to virtual simulation sickness. J. Biol. Rhythms 20, 1 (2005), 71--82.Google ScholarGoogle ScholarCross RefCross Ref
  13. Jacob Cohen. 1992. A power primer.Psychol. Bull. 112, 1 (1992), 155.Google ScholarGoogle ScholarCross RefCross Ref
  14. Mary Czerwinski, Desney S. Tan, and George G. Robertson. 2002. Women take a wider view. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 195--202.Google ScholarGoogle Scholar
  15. James M. Dabbs, E.-Lee Chang, Rebecca A. Strong, and Rhonda Milun. 1998. Spatial ability, navigation strategy, and geographic knowledge among men and women. Evol. Hum. Behav. 19, 2 (1998), 89--98.Google ScholarGoogle ScholarCross RefCross Ref
  16. Rudolph P. Darken, William R. Cockayne, and David Carmein. 1997. The omni-directional treadmill: A locomotion device for virtual worlds. In Proceedings of the ACM Symposium on User Interface Software and Technology (UIST’97). ACM, 213--221.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Ira Driscoll, Derek A. Hamilton, Ronald A. Yeo, William M. Brooks, and Robert J. Sutherland. 2005. Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Hormones Behav. 47, 3 (2005), 326--335.Google ScholarGoogle ScholarCross RefCross Ref
  18. Henry Been-Lirn Duh, Donald E. Parker, and Thomas A. Furness. 2004. An independent visual background reduced simulator sickness in a driving simulator. Presence Teleoperat. Virt. Environ. 13, 5 (2004), 578--588.Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Sheldon M. Ebenholtz. 1992. Motion sickness and oculomotor systems in virtual environments. Presence Teleoperat. Virt. Environ. 1, 3 (1992), 302--305.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner. 2007. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 2 (2007), 175--191.Google ScholarGoogle ScholarCross RefCross Ref
  21. Thomas D. Ferguson, Sharon A. Livingstone-Lee, and Ronald W. Skelton. 2019. Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze. Behav. Brain Res. 364 (2019), 281--295.Google ScholarGoogle ScholarCross RefCross Ref
  22. Ajoy S. Fernandes and Steven K. Feiner. 2016. Combating VR sickness through subtle dynamic field-of-view modification. In Proceedings of the 2016 IEEE Symposium on 3D User Interfaces (3DUI’16). IEEE, 201--210.Google ScholarGoogle Scholar
  23. Kiran J. Fernandes, Vinesh Raja, and Julian Eyre. 2003. Cybersphere: The fully immersive spherical projection system. Commun. ACM 46, 9 (2003), 141--146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Moira B. Flanagan, James G. May, and Thomas G. Dobie. 2005. Sex differences in tolerance to visually-induced motion sickness. Aviat. Space Environ. Med. 76, 7 (2005), 642--646.Google ScholarGoogle Scholar
  25. Andre Garcia, Carryl Baldwin, and Matt Dworsky. 2010. Gender differences in simulator sickness in fixed-versus rotating-base driving simulator. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 54. SAGE Publications, Los Angeles, CA, 1551--1555.Google ScholarGoogle ScholarCross RefCross Ref
  26. John F. Golding. 2006. Motion sickness susceptibility. Auton. Neurosci. Basic Clin. 129, 1 (2006), 67--76.Google ScholarGoogle ScholarCross RefCross Ref
  27. Claire C. Gordon, Cynthia L. Blackwell, Bruce Bradtmiller, Joseph L. Parham, Patricia Barrientos, Stephen P. Paquette, Brian D. Corner, Jeremy M. Carson, Joseph C. Venezia, Belva M. Rockwell, Michael Mucher, and Shirley Kristensen. 2014. 2012 Anthropometric survey of U.S. Army personnel: Methods and summary statistics. U.S. Army Natick Soldier Research Development & Engineering Center (2014).Google ScholarGoogle Scholar
  28. David A. Graeber and Kay M. Stanney. 2002. Gender differences in visually induced motion sickness. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 46. SAGE Publications, Los Angeles, CA, 2109--2113.Google ScholarGoogle Scholar
  29. Nathan Navarro Griffin and Eelke Folmer. 2019. Out-of-body locomotion: Vectionless navigation with a continuous avatar representation. In Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology (VRST’19). DOI:https://doi.org/10.1145/3359996.3364243Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. David B. Henson. 2000. Visual Fields. Butterworth-Heinemann Medical (2nd Ed.).Google ScholarGoogle Scholar
  31. Valen E. Johnson. 2013. Revised standards for statistical evidence. Proc. Natl. Acad. Sci. U.S.A. 110, 48 (2013), 19313--19317.Google ScholarGoogle ScholarCross RefCross Ref
  32. Jonathan W. Kelly, Alec G. Ostrander, Alex F. Lim, Lucia A. Cherep, and Stephen B. Gilbert. 2020. Teleporting through virtual environments: Effects of path scale and environment scale on spatial updating. IEEE Trans. Vis. Comput. Graph. 26, 5 (2020), 1841--1850.Google ScholarGoogle ScholarCross RefCross Ref
  33. Andras Kemeny, Paul George, Frédéric Mérienne, and Florent Colombet. 2017. New VR navigation techniques to reduce cybersickness. Electr. Imag. 2017, 3 (2017), 48--53.Google ScholarGoogle ScholarCross RefCross Ref
  34. Robert S. Kennedy, Norman E. Lane, Kevin S. Berbaum, and Michael G. Lilienthal. 1993. Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 3 (1993), 203--220.Google ScholarGoogle ScholarCross RefCross Ref
  35. B. Keshavarz, H. Hecht, and B. D. Lawson. 2014. Visually induced motion sickness: Characteristics, causes, and countermeasures. In Handbook of Virtual Environments: Design, Implementation, and Applications (2014), 648--697.Google ScholarGoogle Scholar
  36. Behrang Keshavarz, Heiko Hecht, and Lisa Zschutschke. 2011. Intra-visual conflict in visually induced motion sickness. Displays 32, 4 (2011), 181--188.Google ScholarGoogle ScholarCross RefCross Ref
  37. Behrang Keshavarz, Bernhard E. Riecke, Lawrence J. Hettinger, and Jennifer L. Campos. 2015. Vection and visually induced motion sickness: How are they related?Front. Psychol. 6 (2015), 472.Google ScholarGoogle Scholar
  38. Eugenia M. Kolasinski. 1995. Simulator Sickness in Virtual Environments. Technical Report. DTIC Document.Google ScholarGoogle Scholar
  39. J.-F. Lapointe and Norman G. Vinson. 2002. Effects of joystick mapping and field-of-view on human performance in virtual walkthroughs. In Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission. IEEE, 490--493.Google ScholarGoogle Scholar
  40. Joseph J. LaViola Jr. 2000. A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 1 (2000), 47--56.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. J.-W. Lin, Henry Been-Lirn Duh, Donald E. Parker, Habib Abi-Rached, and Thomas A. Furness. 2002. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proceedings of the IEEE Virtual Reality Conference. IEEE, 164--171.Google ScholarGoogle Scholar
  42. Gerard Llorach, Alun Evans, and Josep Blat. 2014. Simulator sickness and presence using HMDs: Comparing use of a game controller and a position estimation system. In Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology. ACM, 137--140.Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. J. M. Loomis, R. L. Klatzky, and R. G. Golledge. 2001. Navigating without vision: Basic and applied research. Optometr. Vis. Sci. 78, 5 (May 2001), 282--289.Google ScholarGoogle ScholarCross RefCross Ref
  44. Jack M. Loomis, Roberta L. Klatzky, Reginald G. Golledge, Joseph G. Cicinelli, James W. Pellegrino, and Phyllis A. Fry. 1993. Nonvisual navigation by blind and sighted: Assessment of path integration ability.J. Exp. Psychol.: Gen. 122, 1 (1993), 73.Google ScholarGoogle ScholarCross RefCross Ref
  45. Michael E. McCauley and Thomas J. Sharkey. 1992. Cybersickness: Perception of self-motion in virtual environments. Presence Teleoperat. Virt. Environ. 1, 3 (1992), 311--318.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Morgan McCullough, Hong Xu, Joel Michelson, Matthew Jackoski, Wyatt Pease, William Cobb, William Kalescky, Joshua Ladd, and Betsy Williams. 2015. Myo arm: Swinging to explore a VE. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception. 107--113.Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Omar Merhi, Elise Faugloire, Moira Flanagan, and Thomas A. Stoffregen. 2007. Motion sickness, console video games, and head-mounted displays. Hum. Fact. 49, 5 (2007), 920--934.Google ScholarGoogle ScholarCross RefCross Ref
  48. Richard G. M. Morris. 1981. Spatial localization does not require the presence of local cues. Learn. Motivat. 12, 2 (1981), 239--260.Google ScholarGoogle ScholarCross RefCross Ref
  49. Justin Munafo, Meg Diedrick, and Thomas A. Stoffregen. 2016. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp. Brain Res. (2016), 1--13.Google ScholarGoogle Scholar
  50. Tao Ni, Doug A. Bowman, and Jian Chen. 2006. Increased display size and resolution improve task performance in information-rich virtual environments. In Proceedings of Graphics Interface 2006. Canadian Information Processing Society, 139--146.Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Guangyu Nie, Yue Liu, and Yongtian Wang. 2017. Prevention of visually induced motion sickness based on dynamic real-time content-aware non-salient area blurring. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct’17). IEEE, 75--78.Google ScholarGoogle ScholarCross RefCross Ref
  52. Raffaella Nori, Laura Piccardi, Andrea Maialetti, Mirco Goro, Andrea Rossetti, Ornella Argento, and Cecilia Guariglia. 2018. No gender differences in egocentric and allocentric environmental transformation after compensating for male advantage by manipulating familiarity. Front. Neurosci. 12 (2018), 204.Google ScholarGoogle ScholarCross RefCross Ref
  53. Oculus. 2017. Oculus Best Practices: Motion. Retrieved from https://developer.oculus.com/design/latest/concepts/bp-locomotion/.Google ScholarGoogle Scholar
  54. George D. Park, R. Wade Allen, Dary Fiorentino, Theodore J. Rosenthal, and Marcia L. Cook. 2006. Simulator sickness scores according to symptom susceptibility, age, and gender for an older driver assessment study. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 50. SAGE Publications: Los Angeles, CA, 2702--2706.Google ScholarGoogle Scholar
  55. Dominique Piber, Jan Nowacki, Sven C. Mueller, Katja Wingenfeld, and Christian Otte. 2018. Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults. Behav. Brain Res. 336 (2018), 44--50.Google ScholarGoogle ScholarCross RefCross Ref
  56. Jérémy Plouzeau, Damien Paillot, Jean-Rémy Chardonnet, and Frédéric Merienne. 2015. Effect of proprioceptive vibrations on simulator sickness during navigation task in virtual environment. In Proceedings of the International Conference on Artificial Reality and Telexistence and the Eurographics Symposium on Virtual Environments. 1--6.Google ScholarGoogle Scholar
  57. Nicholas F. Polys, Seonho Kim, and Doug A. Bowman. 2007. Effects of information layout, screen size, and field of view on user performance in information-rich virtual environments. Comput. Anim. Virt. Worlds 18, 1 (2007), 19--38.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Jerrold D. Prothero, Mark H. Draper, D. E. Parker, M. J. Wells, et al. 1999. The use of an independent visual background to reduce simulator side-effects.Aviat. Space Environ. Med. 70, 3 Pt 1 (1999), 277--283.Google ScholarGoogle Scholar
  59. James T. Reason and Joseph John Brand. 1975. Motion Sickness. Academic Press.Google ScholarGoogle Scholar
  60. Lisa Rebenitsch and Charles Owen. 2016. Review on cybersickness in applications and visual displays. Virt. Real. 20, 2 (2016), 101--125.Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Gary E. Riccio and Thomas A. Stoffregen. 1991. An ecological theory of motion sickness and postural instability. Ecol. Psychol. 3, 3 (1991), 195--240.Google ScholarGoogle ScholarCross RefCross Ref
  62. John J. Rieser, D. Guth, and E. Hill. 1982. Mental processes mediating independent travel: Implications for orientation and mobility. J. Vis. Impair. Blind. (1982).Google ScholarGoogle Scholar
  63. Rose Marie Rine, Michael C. Schubert, and Thomas J. Balkany. 1999. Visual-vestibular habituation and balance training for motion sickness. Phys. Therapy 79, 10 (1999), 949--957.Google ScholarGoogle ScholarCross RefCross Ref
  64. Noah J. Sandstrom, Jordy Kaufman, and Scott A. Huettel. 1998. Males and females use different distal cues in a virtual environment navigation task. Cogn. Brain Res. 6, 4 (1998), 351--360.Google ScholarGoogle ScholarCross RefCross Ref
  65. A. Fleming Seay, David M. Krum, Larry Hodges, and William Ribarsky. 2001. Simulator sickness and presence in a high FOV virtual environment. In Proceedings of the IEEE Virtual Reality Conference. IEEE, 299--300.Google ScholarGoogle ScholarCross RefCross Ref
  66. Kay Stanney, Cali Fidopiastis, and Linda Foster. 2020. Virtual reality is sexist: But it does not have to be. Front. Robot. AI 7, 4 (2020).Google ScholarGoogle Scholar
  67. Kay M. Stanney, Kelly S. Hale, Isabelina Nahmens, and Robert S. Kennedy. 2003. What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience. Hum. Fact. 45, 3 (2003), 504--520.Google ScholarGoogle ScholarCross RefCross Ref
  68. Kay M. Stanney and Phillip Hash. 1998. Locus of user-initiated control in virtual environments: Influences on cybersickness. Presence 7, 5 (1998), 447--459.Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Michael J. Starrett and Arne D. Ekstrom. 2018. Perspective: Assessing the flexible acquisition, integration, and deployment of human spatial representations and information. Front. Hum. Neurosci. 12 (2018).Google ScholarGoogle Scholar
  70. David Swapp, Julian Williams, and Anthony Steed. 2010. The implementation of a novel walking interface within an immersive display. In Proceedings of the 2010 IEEE Symposium on 3D User Interfaces (3DUI’10). IEEE, 71--74.Google ScholarGoogle ScholarDigital LibraryDigital Library
  71. Desney S. Tan, Mary P. Czerwinski, and George G. Robertson. 2006. Large displays enhance optical flow cues and narrow the gender gap in 3-D virtual navigation. Hum. Fact. 48, 2 (2006), 318--333.Google ScholarGoogle ScholarCross RefCross Ref
  72. Nobuhisa Tanaka and Hideyuki Takagi. 2004. Virtual reality environment design of managing both presence and virtual reality sickness. J. Physiol. Anthropol. Appl. Hum. Sci. 23, 6 (2004), 313--317.Google ScholarGoogle ScholarCross RefCross Ref
  73. Luke Thompson. [n.d.]. Unity VR Tunneling. Retrieved from https://github.com/SixWays/UnityVrTunnelling.Google ScholarGoogle Scholar
  74. Sam Tregillus and Eelke Folmer. 2016. VR-STEP: Walking-in-place using inertial sensing for hands free navigation in mobile VR environments. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 1250--1255.Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Michel Treisman. 1977. Motion sickness: An evolutionary hypothesis. Science 197, 4302 (1977), 493--495.Google ScholarGoogle ScholarCross RefCross Ref
  76. Roshan Venkatakrishnan, Rohith Venkatakrishnan, Ayush Bhargava, Kathryn Lucaites, Hannah Solini, Matias Volonte, Andrew Robb, Sabarish V. Babu, Wen-Chieh Lin, and Yun-Xuan Lin. 2020. Comparative evaluation of the effects of motion control on cybersickness in immersive virtual environments. In Proceedings of the 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR’20). IEEE, 672--681.Google ScholarGoogle ScholarCross RefCross Ref
  77. Isabelle Viaud-Delmon, Yuri P. Ivanenko, Alain Berthoz, and Roland Jouvent. 1998. Sex, lies and virtual reality. Nature Neurosci. 1, 1 (May 1998), 15--16. DOI:https://doi.org/10.1038/215Google ScholarGoogle ScholarCross RefCross Ref
  78. Vive. 2017. HTC Vive Survey. Retrieved from http://u3915321.viewer.maka.im/pcviewer/R1HEHKCZ.Google ScholarGoogle Scholar
  79. Daniel Voyer, Susan Voyer, and M. Philip Bryden. 1995. Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin 117, 2 (1995), 250.Google ScholarGoogle ScholarCross RefCross Ref
  80. Nicholas A. Webb and Michael J. Griffin. 2003. Eye movement, vection, and motion sickness with foveal and peripheral vision. Aviat. Space Environ. Med. 74, 6 (2003), 622--625.Google ScholarGoogle Scholar
  81. Maxwell J. Wells and Michael Venturino. 1990. Performance and head movements using a helmet-mounted display with different sized fields-of-view. Opt. Eng. 29, 8 (1990), 870--878.Google ScholarGoogle ScholarCross RefCross Ref
  82. Daniel G. Woolley, Ben Vermaercke, Hans Op de Beeck, Johan Wagemans, Ilse Gantois, Rudi D’Hooge, Stephan P. Swinnen, and Nicole Wenderoth. 2010. Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behav. Brain Res. 208, 2 (2010), 408--414.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Field-of-View Restriction to Reduce VR Sickness Does Not Impede Spatial Learning in Women

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Applied Perception
      ACM Transactions on Applied Perception  Volume 18, Issue 2
      April 2021
      78 pages
      ISSN:1544-3558
      EISSN:1544-3965
      DOI:10.1145/3465476
      Issue’s Table of Contents

      Copyright © 2021 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 11 May 2021
      • Revised: 1 January 2021
      • Accepted: 1 January 2021
      • Received: 1 March 2020
      Published in tap Volume 18, Issue 2

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format