skip to main content
10.1145/3029798.3034784acmconferencesArticle/Chapter ViewAbstractPublication PageshriConference Proceedingsconference-collections
research-article

Development of an Emotion-Competent SLAM Agent

Published:06 March 2017Publication History

ABSTRACT

Emotions are a fundamental part of everyday life and an important topic in the development of artificial intelligence. We combine a Simultaneous Localization and Mapping algorithm with a model of emotion. The model of emotion is able to generate a mapping from the quantitative figures of the SLAM process to human-like emotions. This enables the robot to communicate its current state towards a human observer using emotional expressions. The paper reports on the design of the model, the result of the affective evaluation during an autonomous path finding process and its comparison to experimental data of a survey.

Skip Supplemental Material Section

Supplemental Material

alt2695.mov

mov

24.5 MB

References

  1. T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics & Automation Magazine, 13(3):108--117, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  2. C. Becker-Asano. WASABI: Affect Simulation for Agents with Believable Interactivity. Akademische Verlagsgesellschaft Aka, Berlin, Germany, 2008.Google ScholarGoogle Scholar
  3. C. Becker-Asano and I. Wachsmuth. Affective computing with primary and secondary emotions in a virtual human. Autonomous Agents and Multi-Agent Systems, 20(1):32--49, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. L. Bethel and R. R. Murphy. Survey of non-facial/non-verbal affective expressions for appearance-constrained robots. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(1):83--92, 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. C. L. Bethel, K. Salomon, and R. R. Murphy. Preliminary results: Humans find emotive non-anthropomorphic robots more calming. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction, pages 291--292, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. M. M. Bradley and P. J. Lang. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of behavior therapy and experimental psychiatry, 25(1):49--59, 1994.Google ScholarGoogle Scholar
  7. C. Breazeal. Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59(1):119--155, 2003. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. C. L. Breazeal. Designing sociable robots. MIT press, Cambridge, MA, USA, 2004. Google ScholarGoogle ScholarCross RefCross Ref
  9. H. I. Christian Becker-Asano. Evaluating facial displays of emotion for the android robot Geminoid F. In IEEE Workshop on Affective Computational Intelligence, pages 1--8, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  10. K. Darling. "Who's Johnny?" Anthropomorphic Framing in Human-Robot Interaction, Integration, and Policy. In P. Lin, G. Bekey, K. Abney, and R. Jenkins, editors, ROBOT ETHICS 2.0. Oxford University Press, Oxford, NY, USA, 2015.Google ScholarGoogle Scholar
  11. M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4):28--39, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. T. Fong, I. Nourbakhsh, and K. Dautenhahn. A survey of socially interactive robots. Robotics and autonomous systems, 42(3):143--166, 2003.Google ScholarGoogle Scholar
  13. J. E. Guivant and E. M. Nebot. Optimization of the simultaneous localization and map-building algorithm for real-time implementation. IEEE Transactions on Robotics and Automation, 17(3):242--257, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. J. Han, C. H. Lin, and K. T. Song. Robotic emotional expression generation based on mood transition and personality model. IEEE Transactions on Cybernetics, 43(4):1290--1303, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  15. K. Hogan and R. Stubbs. Can't Get Through: Eight Barriers to Communication. Pelican Publishing Company, Gretna, LA, USA, 2003.Google ScholarGoogle Scholar
  16. N. Mavridis. A review of verbal and non-verbal human-robot interactive communication. Robotics and Autonomous Systems, 63(P1):22--35, 2015. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. A. Mehrabian. Nonverbal communication. Aldine-Atherton, Chicago, IL, USA, 1972.Google ScholarGoogle Scholar
  18. H. Miwa, T. Okuchi, K. Itoh, H. Takanobu, and A. Takanishi. A new mental model for humanoid robots for human friendly communication introduction of learning system, mood vector and second order equations of emotion. In Proceedings of the International Conference on Robotics and Automation, volume 3, pages 3588--3593, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  19. A. Moors, P. C. Ellsworth, K. R. Scherer, and N. H. Frijda. Appraisal theories of emotion: State of the art and future development. Emotion Review, 5(2):119--124, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. A. Russell. Core affect and the psychological construction of emotion. Psychological review, 110(1):145--172, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. A. Russell and L. F. Barrett. Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of personality and social psychology, 76(5):805--819, 1999.Google ScholarGoogle Scholar
  22. J. Saldien, K. Goris, B. Vanderborght, J. Vanderfaeillie, and D. Lefeber. Expressing emotions with the social robot probo. International Journal of Social Robotics, 2(4):377--389, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  23. D. Sander and K. R. Scherer, editors. Oxford Companion to Emotion and the Affective Sciences, chapter Emotion theories and concepts (psychological perspectives), pages 145--149. Oxford University Press, 2009.Google ScholarGoogle Scholar
  24. K. R. Scherer. Toward a dynamic theory of emotion. Geneva studies in Emotion, 1:1--96, 1987.Google ScholarGoogle Scholar
  25. K. R. Scherer. Feelings integrate the central representation of appraisal-driven response organization in emotion. In A. S. Manstead, N. Frijda, and A. Fischer, editors, Feelings and Emotions: The Amsterdam Symposium, pages 136--157. Cambridge, England: Cambridge University Press, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  26. K. R. Scherer. The dynamic architecture of emotion: Evidence for the component process model. Cognition and Emotion, 23(7):1307--1351, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  27. K. R. Scherer. The component process model: Architecture for a comprehensive computational model of emergent emotion. In K. R. Scherer, T. Bänziger, and R. Etienne, editors, Blueprint for Affective Computing: A Sourcebook, pages 47--70. Oxford University Press, New York, USA, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. K. R. Scherer. Emotion and emotional competence: conceptual and theoretical issues for modelling agents. In K. R. Scherer, T. Bänziger, and R. Etienne, editors, Blueprint for Affective Computing: A Sourcebook, pages 3--20. Oxford University Press, New York, USA, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. R. Smith, P. Cheeseman, and M. Self. A stochastic map for uncertain spatial relationships. In 4th International Symposium on Robotic Research, pages 467--474, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Sosnowski, A. Bittermann, K. Kuhnlenz, and M. Buss. Design and evaluation of emotion-display EDDIE. In IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3113--3118, 2006.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Development of an Emotion-Competent SLAM Agent

                  Recommendations

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in
                  • Published in

                    cover image ACM Conferences
                    HRI '17: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction
                    March 2017
                    462 pages
                    ISBN:9781450348850
                    DOI:10.1145/3029798

                    Copyright © 2017 ACM

                    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

                    Publisher

                    Association for Computing Machinery

                    New York, NY, United States

                    Publication History

                    • Published: 6 March 2017

                    Permissions

                    Request permissions about this article.

                    Request Permissions

                    Check for updates

                    Qualifiers

                    • research-article

                    Acceptance Rates

                    HRI '17 Paper Acceptance Rate51of211submissions,24%Overall Acceptance Rate192of519submissions,37%

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader