skip to main content
10.1145/2858036.2858134acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Annexing Reality: Enabling Opportunistic Use of Everyday Objects as Tangible Proxies in Augmented Reality

Published:07 May 2016Publication History

ABSTRACT

Advances in display and tracking technologies hold the promise of increasingly immersive augmented-reality experiences. Unfortunately, the on-demand generation of haptic experiences is lagging behind these advances in other feedback channels. We present Annexing Reality; a system that opportunistically annexes physical objects from a user's current physical environment to provide the best-available haptic sensation for virtual objects. It allows content creators to a priori specify haptic experiences that adapt to the user's current setting. The system continuously scans user's surrounding, selects physical objects that are similar to given virtual objects, and overlays the virtual models on to selected physical ones reducing the visual-haptic mismatch. We describe the developer's experience with the Annexing Reality system and the techniques utilized in realizing it. We also present results of a developer study that validates the usability and utility of our method of defining haptic experiences.

Skip Supplemental Material Section

Supplemental Material

pn0634-file3.mp4

mp4

54.4 MB

p1957-hettiarachchi.mp4

mp4

299.5 MB

References

  1. Merwan Achibet, Maud Marchal, Ferran Argelaguet, and Anatole Lecuyer. 2014. The Virtual Mitten: A novel interaction paradigm for visuo-haptic manipulation of objects using grip force. 2014 IEEE Symposium on 3D User Interfaces (3DUI), IEEE, 59--66. http://doi.org/10.1109/3DUI.2014.6798843Google ScholarGoogle ScholarCross RefCross Ref
  2. Marco Agus, Andrea Giachetti, Enrico Gobbetti, Gianluigi Zanetti, and Antonio Zorcolo. 2014. A multiprocessor decoupled system for the simulation of temporal bone surgery. Computing and Visualization in Science 5, 1: 35--43. http://doi.org/10.1007/s00791002-0085--5Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T. Silva. 2003. Computing and rendering point set surfaces. IEEE Transactions on Visualization and Computer Graphics 9, 1: 3--15. http://doi.org/10.1109/TVCG.2003.1175093 Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Yuki Ban, Takashi Kajinami, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2012. Modifying an identified angle of edged shapes using pseudo-haptic effects. Haptics: Perception, Devices, Mobility, and Communication: 25--36. Retrieved September 23, 2015 from http://link.springer.com/chapter/10.1007/978-3-64231401-8_3 Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Yuki Ban, Takashi Kajinami, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2012. Modifying an identified curved surface shape using pseudo-haptic effect. 2012 IEEE Haptics Symposium (HAPTICS), IEEE, 211--216. http://doi.org/10.1109/HAPTIC.2012.6183793 Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Yuki Ban, Takuji Narumi, Tomohiro Tanikawa, and Michitaka Hirose. 2012. Modifying an identified position of edged shapes using pseudo-haptic effects. Proceedings of the 18th ACM symposium on Virtual reality software and technology - VRST '12, ACM Press, 93--96. http://doi.org/10.1145/2407336.2407353 Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Paul J. Besl and Neil D. McKay. 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2: 239--256. http://doi.org/10.1109/34.121791 Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Anders G. Buch, Dirk Kraft, Joni-Kristian Kamarainen, Henrik G. Petersen, and Norbert Kruger. 2013. Pose estimation using local structure-specific shape and appearance context. 2013 IEEE International Conference on Robotics and Automation, IEEE, 2080--2087. http://doi.org/10.1109/ICRA.2013.6630856Google ScholarGoogle ScholarCross RefCross Ref
  9. Albert S. Carlin, Hunter G. Hoffman, and Suzanne Weghorst. 1997. Virtual reality and tactile augmentation in the treatment of spider phobia: a case report. Behaviour Research and Therapy 35, 2: 153--158. http://doi.org/10.1016/S0005-7967(96)00085-XGoogle ScholarGoogle ScholarCross RefCross Ref
  10. Kai-Yin Cheng, Rong-Hao Liang, Bing-Yu Chen, Rung-Huei Laing, and Sy-Yen Kuo. 2010. iCon: utilizing everyday objects as additional, auxiliary and instant tabletop controllers. Proceedings of the 28th international conference on Human factors in computing systems CHI '10, ACM Press, 1155--1164. http://doi.org/10.1145/1753326.1753499 Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Christian Corsten, Ignacio Avellino, Max Möllers, and Jan Borchers. 2013. Instant user interfaces. Proceedings of the 2013 ACM international conference on Interactive tabletops and surfaces ITS '13, ACM Press, 71--80. http://doi.org/10.1145/2512349.2512799 Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Michael Csongei, Liem Hoang, Ulrich Eck, and Christian Sandor. 2012. ClonAR: Rapid redesign of real-world objects. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 277--278. http://doi.org/10.1109/ISMAR.2012.6402572 Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lisa M. Di Diodato, Richard Mraz, Nicole S. Baker, and Simon J. Graham. 2007. A haptic force feedback device for virtual reality-fMRI experiments. IEEE transactions on neural systems and rehabilitation engineering?: a publication of the IEEE Engineering in Medicine and Biology Society 15, 4: 570--576. http://doi.org/10.1109/TNSRE.2007.906962Google ScholarGoogle Scholar
  14. Markus Funk, Oliver Korn, and Albrecht Schmidt. 2014. An augmented workplace for enabling userdefined tangibles. Proceedings of the extended abstracts of the 32nd annual ACM conference on Human factors in computing systems CHI EA '14, ACM Press, 1285--1290. http://doi.org/10.1145/2559206.2581142 Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Sidhant Gupta, Dan Morris, Shwetak N. Patel, and Desney Tan. 2013. AirWave: non-contact haptic feedback using air vortex rings. Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing - UbiComp '13, ACM Press, 419--428. http://doi.org/10.1145/2493432.2493463 Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Steven J. Henderson and Steven Feiner. 2008. Opportunistic controls: leveraging natural affordances as tangible user interfaces for augmented reality. Proceedings of the 2008 ACM symposium on Virtual reality software and technology - VRST '08, ACM Press, 211--218. http://doi.org/10.1145/1450579.1450625 Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Valentin Heun, Shunichi Kasahara, and Pattie Maes. 2013. Smarter objects: using AR technology to program physical objects and their interactions. CHI '13 Extended Abstracts on Human Factors in Computing Systems on CHI EA '13, ACM Press, 961--966. http://doi.org/10.1145/2468356.2468528 Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. 1994. Passive real-world interface props for neurosurgical visualization. Proceedings of the SIGCHI conference on Human factors in computing systems celebrating interdependence CHI '94, ACM Press, 452--458. http://doi.org/10.1145/191666.191821 Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Koichi Hirota and Michitaka Hirose. 1995. Providing force feedback in virtual environments. IEEE Computer Graphics and Applications 15, 5: 22--30. http://doi.org/10.1109/38.403824 Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Hunter G. Hoffman. 1998. Physically touching virtual objects using tactile augmentation enhances the realism of virtual environments. Proceedings. IEEE 1998 Virtual Reality Annual International Symposium (Cat. No.98CB36180), IEEE Comput. Soc, 59--63. http://doi.org/10.1109/VRAIS.1998.658423 Google ScholarGoogle ScholarCross RefCross Ref
  21. Hiroshi Ishii and Brygg Ullmer. 1997. Tangible bits. Proceedings of the SIGCHI conference on Human factors in computing systems CHI '97, ACM Press, 234--241. http://doi.org/10.1145/258549.258715 Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hiroo Iwata, Hiroaki Yano, Fumitaka Nakaizumi, and Ryo Kawamura. 2001. Project FEELEX: adding haptic surface to graphics. Proceedings of the 28th annual conference on Computer graphics and interactive techniques SIGGRAPH '01, ACM Press, 469--476. http://doi.org/10.1145/383259.383314 Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Benjamin Knoerlein, Gábor Székely, and Matthias Harders. 2007. Visuo-haptic collaborative augmented reality ping-pong. Proceedings of the international conference on Advances in computer entertainment technology - ACE '07, ACM Press, 91--94. http://doi.org/10.1145/1255047.1255065 Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Aaron Kotranza and Benjamin Lok. 2008. Virtual Human + Tangible Interface = Mixed Reality Human An Initial Exploration with a Virtual Breast Exam Patient. 2008 IEEE Virtual Reality Conference, IEEE, 99--106. http://doi.org/10.1109/VR.2008.4480757Google ScholarGoogle ScholarCross RefCross Ref
  25. Harold W. Kuhn. 1955. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly 2, 1--2: 83--97. http://doi.org/10.1002/nav.3800020109Google ScholarGoogle ScholarCross RefCross Ref
  26. Eun Kwon, Gerard J. Kim, and Sangyoon Lee. 2009. Effects of sizes and shapes of props in tangible augmented reality. 2009 8th IEEE International Symposium on Mixed and Augmented Reality, IEEE, 201--202. http://doi.org/10.1109/ISMAR.2009.5336463 Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Daniel Leithinger, Sean Follmer, Alex Olwal, et al. 2013. Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems CHI '13, ACM Press, 1441--1450. http://doi.org/10.1145/2470654.2466191 Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Thomas H. Massie and Kenneth J. Salisbury. 1994. The phantom haptic interface: A device for probing virtual objects. Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, 295-- 300.Google ScholarGoogle Scholar
  29. Paul Milgram and Fumio Kishino. 1994. A Taxonomy of Mixed Reality Visual Displays. IEICE TRANSACTIONS on Information and Systems E77-D, 1321--1329.Google ScholarGoogle Scholar
  30. Yoichi Ochiai, Kota Kumagai, Takayuki Hoshi, Jun Rekimoto, Satoshi Hasegawa, and Yoshio Hayasaki. 2015. Fairy lights in femtoseconds. ACM SIGGRAPH 2015 Posters on SIGGRAPH '15, ACM Press, 1--1. http://doi.org/10.1145/2787626.2792630Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Ohan Oda, Levi J. Lister, Sean White, and Steven Feiner. 2008. Developing an augmented reality racing game. 2. Retrieved September 21, 2015 from http://dl.acm.org/citation.cfm?id=1363200.1363203Google ScholarGoogle ScholarCross RefCross Ref
  32. Bernhard Pflesser, Andreas Petersik, Ulf Tiede, Karl Heinz Höhne, and Rudolf Leuwer. 2002. Volume cutting for virtual petrous bone surgery. Computer aided surgery?: official journal of the International Society for Computer Aided Surgery 7, 2: 74--83. http://doi.org/10.1002/igs.10036Google ScholarGoogle Scholar
  33. Jun Rekimoto. 2014. Traxion: a tactile interaction device with virtual force sensation. ACM SIGGRAPH 2014 Emerging Technologies on SIGGRAPH '14, ACM Press, 1--1. http://doi.org/10.1145/2614066.2614079 Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Radu B. Rusu, Nico Blodow, and Michael Beetz. 2009. Fast Point Feature Histograms (FPFH) for 3D registration. 2009 IEEE International Conference on Robotics and Automation, IEEE, 3212--3217. http://doi.org/10.1109/ROBOT.2009.5152473 Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Radu B. Rusu. 2010. Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments. KI - Künstliche Intelligenz 24, 4: 345--348. http://doi.org/10.1007/s13218-010-0059-6Google ScholarGoogle ScholarCross RefCross Ref
  36. Satoshi Saga and Ramesh Raskar. 2012. Feel through window. SIGGRAPH Asia 2012 Emerging Technologies on SA '12, ACM Press, 1--3. http://doi.org/10.1145/2407707.2407715Google ScholarGoogle Scholar
  37. Makoto Sato. 2002. SPIDAR and virtual reality. Proceedings of the 5th Biannual World Automation Congress, TSI Press, 17--23. http://doi.org/10.1109/WAC.2002.1049515Google ScholarGoogle ScholarCross RefCross Ref
  38. Ruwen Schnabel, Roland Wahl, and Reinhard Klein. 2007. Efficient RANSAC for Point-Cloud Shape Detection. Computer Graphics Forum 26, 2: 214--226. http://doi.org/10.1111/j.1467-8659.2007.01016.xGoogle ScholarGoogle ScholarCross RefCross Ref
  39. Adalberto L. Simeone, Eduardo Velloso, and Hans Gellersen. 2015. Substitutional Reality. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems CHI '15, ACM Press, 3307--3316. http://doi.org/10.1145/2702123.2702389 Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Rajinder Sodhi, Ivan Poupyrev, Matthew Glisson, and Ali Israr. 2013. AIREAL: interactive tactile experiences in free air. ACM Transactions on Graphics 32, 4: 134. http://doi.org/10.1145/2461912.2462007 Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Yuriko Suzuki and Minoru Kobayashi. 2005. Air jet driven force feedback in virtual reality. IEEE Computer Graphics and Applications 25, 1: 44--47. http://doi.org/10.1109/MCG.2005.1 Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. James Vallino and Christopher Brown. 1999. Haptics in augmented reality. Proceedings IEEE International Conference on Multimedia Computing and Systems, IEEE Comput. Soc, 195--200. http://doi.org/10.1109/MMCS.1999.779146 Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Peter Weir, Christian Sandor, Matt Swoboda, Ulrich Eck, Gerhard Reitmayr, and Arindam Dey. 2012. BurnAR: Feel the heat. 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), IEEE, 331--332. http://doi.org/10.1109/ISMAR.2012.6402599 Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Microsoft HoloLens. Retrieved September 21, 2015 from https://www.microsoft.com/microsofthololens/en-usGoogle ScholarGoogle Scholar
  45. Kinect for Xbox One. Retrieved September 21, 2015 from http://www.xbox.com/en-ca/xboxone/accessories/kinect-for-xbox-oneGoogle ScholarGoogle Scholar
  46. ATOMIC Authoring Tool. Retrieved September 21, 2015 from http://www.sologicolibre.org/projects/atomic/en/Google ScholarGoogle Scholar
  47. buildAR. Retrieved September 21, 2015 from https://buildar.com/startGoogle ScholarGoogle Scholar
  48. Vuforia Augmented Reality for 3D Mobile Content. Retrieved September 21, 2015 from https://www.qualcomm.com/products/vuforiaGoogle ScholarGoogle Scholar
  49. metaio. Retrieved September 22, 2015 from https://www.metaio.com/Google ScholarGoogle Scholar
  50. dlib C++ Library - Optimization. Retrieved September 21, 2015 from http://dlib.net/optimization.htmlGoogle ScholarGoogle Scholar
  51. Meta Augmented Reality. Retrieved September 23, 2015 from https://www.getameta.com/Google ScholarGoogle Scholar

Index Terms

  1. Annexing Reality: Enabling Opportunistic Use of Everyday Objects as Tangible Proxies in Augmented Reality

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      CHI '16: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
      May 2016
      6108 pages
      ISBN:9781450333627
      DOI:10.1145/2858036

      Copyright © 2016 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 7 May 2016

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      CHI '16 Paper Acceptance Rate565of2,435submissions,23%Overall Acceptance Rate6,199of26,314submissions,24%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader