skip to main content
10.1145/2628363.2628390acmconferencesArticle/Chapter ViewAbstractPublication PagesmobilehciConference Proceedingsconference-collections
research-article

A wearable virtual guide for context-aware cognitive indoor navigation

Authors Info & Claims
Published:23 September 2014Publication History

ABSTRACT

In this paper, we explore a new way to provide context-aware assistance for indoor navigation using a wearable vision system. We investigate how to represent the cognitive knowledge of wayfinding based on first-person-view videos in real-time and how to provide context-aware navigation instructions in a human-like manner. Inspired by the human cognitive process of wayfinding, we propose a novel cognitive model that represents visual concepts as a hierarchical structure. It facilitates efficient and robust localization based on cognitive visual concepts. Next, we design a prototype system that provides intelligent context-aware assistance based on the cognitive indoor navigation knowledge model. We conducted field tests and evaluated the system's efficacy by benchmarking it against traditional 2D maps and human guidance. The results show that context-awareness built on cognitive visual perception enables the system to emulate the efficacy of a human guide, leading to positive user experience.

References

  1. Aixplorer. http://www.aixplorer.de/.Google ScholarGoogle Scholar
  2. Arikawa, M., Konomi, S. I. and Ohnishi, K. NAVITIME: Supporting pedestrian navigation in the real world. Pervasive Computing, 6, 3, (2007), 21--29. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baras, K., Moreira, A. and Meneses, F., Navigation based on symbolic space models. in IPIN'10, (2010), 1--5.Google ScholarGoogle ScholarCross RefCross Ref
  4. Barberis, C., Bottino, A., Malnati, G. and Montuschi, P. Experiencing indoor navigation on mobile devices. IT Professional, 14,1, (2014), 50--57.Google ScholarGoogle Scholar
  5. Bardram, J. E. Activity-based computing for medical work in hospitals. ACM Transactions on Computer-Human Interaction, 16, 2, (2009), 10:11--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Baus, J., Krüger, A. and Wahlster, W., A resource-adaptive mobile navigation system. in IUI'02, (2002), 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brush, A. J., Karlson, A. K., Scott, J., Sarin, R., Jacobs, A., Bond, B., Murillo, O., Hunt, G., Sinclair, M., Hammil, K. and Levi, S. User experiences with activity-based navigation on mobile devices MobileHCI'10, ACM Press (2010). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bulling, A., Weichel, C. and Gellersen, H., EyeContext: Recognition of high-level contextual cues from human visual behaviour. in CHI'13, (2013), 305--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Butz, A., Baus, J., Krüger, A. and Lohse, M., A hybrid indoor navigation system. in IUI'01, (2001), 25--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chatting, D. J., Action and reaction for physical map interfaces. in TEI'08, (2008), 187--190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cheverst, K., Davies, N., Mitchell, K. and Friday, A., Experiences of developing and deploying a context-aware tourist guide: The guide project. in MobiCom'00, (2000), 20--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cheverst, K., Davies, N., Mitchell, K., Friday, A. and Efstratiou, C., Developing a context-aware electronic tourist guide: Some issues and experiences. in CHI'00, (2000), 17--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Davies, N., Cheverst, K., Mitchell, K. and Efrat, A. Using and determining location in a context-sensitive tour guide. Computer, 34, 8, (2001), 35--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Dey, A. K., Abowd, G. D. and Salber, D. A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction, 16, 2, (2001), 97--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Etzion, O., Skarbovsky, I., Magid, Y., Zolotorevsky, N. and Rabinovich, E., Context aware computing and its utilization in event-based systems. in DEBS'10, (2010), 270--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fallah, N., Apostolopoulos, I., Bekris, K. and Folmer, E. Indoor human navigation systems - A survey. Interacting with Computers, 25, 1, (2013), 21--33.Google ScholarGoogle Scholar
  17. Freksa, C., Klippel, A. and Winter, S. A cognitive perspective on spatial context. in Cohn, A. G., Freksa, C. and Nebel, B. eds. Spatial Cognition: Specialization and Integration, Dagstuhl, 2007.Google ScholarGoogle Scholar
  18. Giudice, N. A., Bakdash, J. Z., Legge, G. E. and Roy, R. Spatial learning and navigation using a virtual verbal display. ACM Trans. Applied Perception, 7, 1, (2010), No. 10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Hanheide, M. A Cognitive Ego-Vision System for Interactive Assistance, University of Bielefeld, Bielefeld, 2006.Google ScholarGoogle Scholar
  20. Hegartya, M., Richardsona, A. E., Montellob, D. R., Lovelacea, K. and Subbiah, I. Development of a self-report measure of environmental spatial ability. Intelligence, 30, (2002), 425--447.Google ScholarGoogle ScholarCross RefCross Ref
  21. Heiniz, P., Krempels, K. H., Terwelp, C. and Wüller, S., Landmark-based navigation in complex buildings. in IPIN'12, (2012), 1--9.Google ScholarGoogle ScholarCross RefCross Ref
  22. Hile, H., Grzeszczuk, R., Liu, A., Vedantham, R., Kosecka, J. and Borriello, G. Landmark-based pedestrian navigation with enhanced spatial reasoning. Lecture Notes in Computer Science - Pervasive Computing, 5538, (2009), 59--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hong, J., Suh, E.-H. and Kim, S.-J. Context-aware systems: A literature review and classification. Expert Systems with Applications, 36, 4, (2009), 8509--8522. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kanade, T. and Hebert, M. First-person vision. Proceedings of the IEEE, 100, 8, (2012) 2442--2453.Google ScholarGoogle ScholarCross RefCross Ref
  25. Kaneko, Y. and Miura, J. View sequence generation for view-based outdoor navigation. in ACPR'11, (2011), 139--143.Google ScholarGoogle ScholarCross RefCross Ref
  26. Kenteris, M., Gavalas, D. and Economou, D. Electronic mobile guides: A survey. Personal and ubiquitous computing, 15, 1, (2011), 97--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kjeldskov, J. and Paay, J. Indexicality: Understanding mobile human-computer interaction in context. ACM Trans. ComputerHuman Interaction, 17, 4, (2010), 14:11--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Kray, C., Elting, C., Laakso, K. and Coors, V., Presenting route instructions on mobile devices. in IUI'03, (2003), 117--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Li, L., Goh, W., Lim, J. H. and Pan, S. J. Extended spectral regression for efficient scene recognition. Pattern Recognition, 47, 9, (2014), 2940--2951.Google ScholarGoogle ScholarCross RefCross Ref
  30. McKnight, D. H., Carter, M., Thatcher, J. B. and Clay, P. Trust in a specific technology: An investigation of its components and measures. ACM Trans. Management Information Systems, 2, 2, (2011), 1--15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Möller, A., Kranz, M., Huitl, R., Diewald, S. and Roalter, L. A mobile indoor navigation system interface adapted to vision-based localization, in MUM'12, (2012), No.4.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mulloni, A., Seichter, H. and Schmalstieg, D., Handheld augmented reality indoor navigation with activity-based instructions. in MobileHCI'11, (2011), 211--220. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mulloni, A., Seichter, H. and Schmalstieg, D., Indoor navigation with mixed reality world-in-miniature views and sparse localization on mobile devices. in AVI'12, (2012), 212--215. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Opperman, R. and Specht, M., A context-sensitive nomadic exhibition guide, in HUC'00, (2000), 127--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Richter, K.-F. and Klippel, A. A model for context-specific route directions. in Freksa, C., Knauff, M. and Krieg-Brückner, B. eds. Spatial Cognition IV. Reasoning, Action, and Interaction, (2004), 5878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Schilit, B. and Theimer, M. Disseminating active map information to mobile hosts. IEEE Network, 88, 5, (1994), 22--32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Snowdon, C. and Kray, C., Exploring the use of landmarks for mobile navigation support in natural environments. in MobileHCI '09, (2009), No. 13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Taher, F. and Cheverst, K., Exploring user preferences for indoor navigation support through a combination of mobile and fixed displays. in MobileHCI'11, (2011), 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Wang, S.-L. and Wub, C.-Y. Application of context-aware and personalized recommendation to implement an adaptive ubiquitous learning system. Expert Systems with Applications, 38, 9, (2011), 10831--10838. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wiener, J. M., Buchner, S. J. and Holscher, C. Towards a taxonomy of wayfinding tasks: A knowledge-based approach. Spatial Cognition and Computation, 9, 2, (2009), 152--165.Google ScholarGoogle ScholarCross RefCross Ref
  41. Willis, K. S., Hölscher, C., Wilbertz, G. and Li, C. Comparison of spatial knowledge acquisition with maps and mobile maps. Computers, Environment and Urban Systems, 33, 2, (2009), 100--110.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A wearable virtual guide for context-aware cognitive indoor navigation

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MobileHCI '14: Proceedings of the 16th international conference on Human-computer interaction with mobile devices & services
      September 2014
      664 pages
      ISBN:9781450330046
      DOI:10.1145/2628363

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 September 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MobileHCI '14 Paper Acceptance Rate35of124submissions,28%Overall Acceptance Rate202of906submissions,22%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader