skip to main content
research-article

A review of error estimation in adaptive quadrature

Published:07 September 2012Publication History
Skip Abstract Section

Abstract

The most critical component of any adaptive numerical quadrature routine is the estimation of the integration error. Since the publication of the first algorithms in the 1960s, many error estimation schemes have been presented, evaluated, and discussed. This article presents a review of existing error estimation techniques and discusses their differences and their common features. Some common shortcomings of these algorithms are discussed, and a new general error estimation technique is presented.

References

  1. Aitken, A. 1926. On Bernoulli's numerical solution of algebraic equations. Proc. Royal Soc. Edinburgh 46, 289--305.Google ScholarGoogle ScholarCross RefCross Ref
  2. Balles, Z. and Trefethen, L. N. 2004. An extensions of MATLAB to continuous functions and operators. SIAM J. Sci. Comput. 25, 5, 1743--1770. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bauer, F. L., Rutishauser, H., and Stiefel, E. 1963. New aspects in numerical quadrature. In Experimental Arithmetic, High Speed Computing and Mathematics, N. C. Metropolis, A. H. Taub, J. Todd, and C. B. Tompkins, Eds. American Mathematical Society, Providence, RI, 199--217.Google ScholarGoogle Scholar
  4. Berntsen, J. and Espelid, T. O. 1984. On the use of Gauss quadrature in adaptive automatic integration schemes. BIT Numer. Math. 24, 239--242.Google ScholarGoogle ScholarCross RefCross Ref
  5. Berntsen, J. and Espelid, T. O. 1991. Error estimation in automatic quadrature routines. ACM Trans. Math. Softw. 17, 2, 233--252. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Björck, Å. and Pereyra, V. 1970. Solution of Vandermonde systems of equations. Math. Comput. 24, 112, 893--903.Google ScholarGoogle Scholar
  7. Casaletto, J., Pickett, M., and Rice, J. 1969. A comparison of some numerical integration programs. SIGNUM Newsl. 4, 3, 30--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Clenshaw, C. W. and Curtis, A. R. 1960. A method for numerical integration on an automatic computer. Numerische Mathematik 2, 197--205.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Davis, P. J. and Rabinowitz, P. 1967. Numerical Integration. Blaisdell Publishing Company, Waltham, MA.Google ScholarGoogle Scholar
  10. de Boor, C. 1971. CADRE: An algorithm for numerical quadrature. In Mathematical Software, J. R. Rice, Ed. Academic Press, New York, NY, 201--209.Google ScholarGoogle Scholar
  11. de Doncker, E. 1978. An adaptive extrapolation algorithm for automatic integration. SIGNUM Newsl. 13, 2, 12--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Eaton, J. W. 2002. GNU Octave Manual. Network Theory Limited, U.K.Google ScholarGoogle Scholar
  13. Espelid, T. O. 1992. DQUAINT: An algorithm for adaptive quadrature over a collection of finite intervals. In Numerical Integration, T. O. Espelid and A. Genz, Eds. Kluwer Academic Publishers, Netherlands, 341--342.Google ScholarGoogle Scholar
  14. Espelid, T. O. 2002. Doubly adaptive quadrature routines based on Newton-Cotes rules. Tech. rep. 229, Department of Informatics, University of Bergen, Norway.Google ScholarGoogle Scholar
  15. Espelid, T. O. 2003. Doubly adaptive quadrature routines based on Newton-Cotes rules. BIT Numer. Math. 43, 319--337.Google ScholarGoogle ScholarCross RefCross Ref
  16. Espelid, T. O. 2004a. Extended doubly adaptive quadrature routines. Tech. rep. 266, Department of Informatics, University of Bergen, Norway.Google ScholarGoogle Scholar
  17. Espelid, T. O. 2004b. A test of QUADPACK and four doubly adaptive quadrature routines. Tech. rep. 281, Department of Informatics, University of Bergen, Norway.Google ScholarGoogle Scholar
  18. Espelid, T. O. 2007. Algorithm 868: Globally doubly adaptive quadrature—reliable MATLAB codes. ACM Trans. Math. Softw. 33, 3, Article 21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Espelid, T. O. and Sørevik, T. 1989. A discussion of a new error estimate for adaptive quadrature. BIT Numer. Math. 29, 293--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Favati, P., Lotti, G., and Romani, F. 1991a. Interpolatory integration formulas for optimal composition. ACM Trans. Math. Softw. 17, 2, 207--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Favati, P., Lotti, G., and Romani, F. 1991b. Local error estimates in quadrature. BIT Numer. Math. 31, 102--111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Forsythe, G. E., Malcolm, M. A., and Moler, C. B. 1977. Computer Methods for Mathematical Computations. Prentice-Hall, Inc., Englewood Cliffs, NJ. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Alken, P., Booth, M., and Rossi, F. 2009. GNU Scientific Library Reference Manual, 3rd Ed. Network Theory Ltd., U.K. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Gallaher, L. J. 1967. Algorithm 303: An adaptive quadrature procedure with random panel sizes. Commun. ACM 10, 6, 373--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Gander, W. 2006. Generating numerical algorithms using a computer algebra system. BIT Numer. Math. 46, 491--504.Google ScholarGoogle ScholarCross RefCross Ref
  26. Gander, W. and Gautschi, W. 2001. Adaptive quadrature—revisited. BIT 40, 1, 84--101.Google ScholarGoogle ScholarCross RefCross Ref
  27. Garribba, S., Quartapelle, L., and Reina, G. 1978. SNIFF: Efficient self-tuning algorithm for numerical integration. Computing 20, 363--375.Google ScholarGoogle ScholarCross RefCross Ref
  28. Gautschi, W. 1975. Norm estimates for inverses of Vandermonde matrices. Numerische Mathematik 23, 337--347.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Gautschi, W. 1997. Numerical Analysis, An Introduction. Birkhäuser Verlag, Boston, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Gautschi, W. 2004. Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford.Google ScholarGoogle ScholarCross RefCross Ref
  31. Gonnet, P. 2009. Adaptive quadrature re-revisited. Ph.D. dissertation, ETH Zürich.Google ScholarGoogle Scholar
  32. Gonnet, P. 2010a. Efficient construction, update and downdate of the coefficients of interpolants based on polynomials satisfying a three-term recurrence relation. arXiv:1003.4628.Google ScholarGoogle Scholar
  33. Gonnet, P. 2010b. Increasing the reliability of adaptive quadrature using explicit interpolants. ACM Trans. Math. Softw. 37, 26:1--26:32. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Hasegawa, T., Hibino, S., Hosoda, Y., and Ninomiya, I. 2007. An extended doubly-adaptive quadrature method based on the combination of the Ninomiya and the FLR schemes. Numer. Algorithms 45, 1--4, 101--112.Google ScholarGoogle ScholarCross RefCross Ref
  35. Henrici, P. 1982. Essentials of Numerical Analysis, with Pocket Calculator Demonstrations. John Wiley & Sons, Inc., New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Henriksson, S. 1961. Contribution no. 2: Simpson numerical integration with variable length of step. BIT Numer. Math. 1, 290.Google ScholarGoogle Scholar
  37. Higham, N. J. 1988. Fast solution of Vandermonde-like systems involving orthogonal polynomials. IMA J. Numer. Anal. 8, 473--486.Google ScholarGoogle ScholarCross RefCross Ref
  38. Higham, N. J. 1990. Stability anal. of algorithms for solving confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appli. 11, 1, 23--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Hillstrom, K. E. 1970. Comparison of several adaptive Newton-Cotes quadrature routines in evaluating definite integrals with peaked integrands. Commun. ACM 13, 6, 362--365. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Kahaner, D. K. 1971. 5.15 Comparison of numerical quadrature formulas. In Mathematical Software, J. R. Rice, Ed. Academic Press, New York, NY, 229--259.Google ScholarGoogle Scholar
  41. Kahaner, D. K. 1972. Numberical quadrature by the ϵ-algorithm. Math. Comput. 26, 119, 689--693.Google ScholarGoogle Scholar
  42. Krommer, A. R. and Überhuber, C. W. 1998. Computational Integration. SIAM, Philadelphia, PA.Google ScholarGoogle Scholar
  43. Kronrod, A. S. 1965. Nodes and Weights of Quadrature Formulas—Authorized Translation from the Russian. Consultants Bureau, New York, NY.Google ScholarGoogle Scholar
  44. Kuncir, G. F. 1962. Algorithm 103: Simpson's rule integrator. Commun. ACM 5, 6, 347. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Laurie, D. P. 1983. Sharper error estimates in adaptive quadrature. BIT Numer. Math. 23, 258--261.Google ScholarGoogle ScholarCross RefCross Ref
  46. Laurie, D. P. 1985. Practical error estimation in numerical integration. J. Comput. Appl. Math. 12--13, 425--431.Google ScholarGoogle ScholarCross RefCross Ref
  47. Laurie, D. P. 1992. Stratified sequences of nested quadrature formulas. Quaestiones Mathematicae 15, 364--384.Google ScholarGoogle ScholarCross RefCross Ref
  48. Lyness, J. N. 1965. Symmetric integration rules for hypercubes III: Construction of integration rules using null rules. Math. Comput. 19, 625--637.Google ScholarGoogle Scholar
  49. Lyness, J. N. 1969. Notes on the adaptive Simpson quadrature routine. J. ACM 16, 3, 483--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Lyness, J. N. 1970. Algorithm 379: SQUANK (Simpson Quadrature Used Adaptively -- Noise Killed). Commun. ACM 13, 4, 260--262. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Lyness, J. N. and Kaganove, J. J. 1976. Comments on the nature of automatic quadrature routines. ACM Trans. Math. Softw. 2, 1, 170--177. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Lyness, J. N. and Kaganove, J. J. 1977. A technique for comparing automatic quadrature routines. Comput. J. 20, 2, 170--177.Google ScholarGoogle ScholarCross RefCross Ref
  53. Malcolm, M. A. and Simpson, R. B. 1975. Local versus global strategies for adaptive quadrature. ACM Trans. Math. Softw. 1, 2, 129--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. McKeeman, W. M. 1962. Algorithm 145: Adaptive numerical integration by Simpson's rule. Commun. ACM 5, 12, 604. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. McKeeman, W. M. 1963. Algorithm 198: Adaptive integration and multiple integration. Commun. ACM 6, 8, 443--444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. McKeeman, W. M. and Tesler, L. 1963. Algorithm 182: Nonrecursive adaptive integration. Commun. ACM 6, 6, 315. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Morrin, H. 1955. Integration subroutine -- fixed point. Tech. rep. 701 Note #28, U.S. Naval Ordnance Test Station, China Lake, CA.Google ScholarGoogle Scholar
  58. Ninomiya, I. 1980. Improvements of adaptive Newton-Cotes quadrature methods. J. Info. Process. 3, 3, 162--170.Google ScholarGoogle Scholar
  59. O'Hara, H. and Smith, F. J. 1968. Error estimation in Clenshaw-Curtis quadrature formula. Comput. J. 11, 2, 213--219.Google ScholarGoogle ScholarCross RefCross Ref
  60. O'Hara, H. and Smith, F. J. 1969. The evaluation of definite integrals by interval subdivision. Comput. J. 12, 2, 179--182.Google ScholarGoogle ScholarCross RefCross Ref
  61. Oliver, J. 1971. A practical strategy for the Clenshaw-Curtis quadrature method. J. Inst. Math. Appl. 8, 53--56.Google ScholarGoogle ScholarCross RefCross Ref
  62. Oliver, J. 1972. A doubly-adaptive Clenshaw-Curtis quadrature method. Comput. J. 15, 2, 141--147.Google ScholarGoogle ScholarCross RefCross Ref
  63. Pachón, R., Platte, R., and Trefethen, L. N. 2009. Piecewise smooth chebfuns. IMA J. Numer. Anal., in Press.Google ScholarGoogle Scholar
  64. Patterson, T. N. L. 1973. Algorithm 468: Algorithm for automatic numerical integration over a finite interval. Commun. ACM 16, 11, 694--699. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Piessens, R. 1973. An algorithm for automatic integration. Angewandte Informatik 9, 399--401.Google ScholarGoogle Scholar
  66. Piessens, R., de Doncker-Kapenga, E., Überhuber, C. W., and Kahaner, D. K. 1983. QUADPACK A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin.Google ScholarGoogle Scholar
  67. Ralston, A. and Rabinowitz, P. 1978. A First Course in Numerical Analysis. McGraw-Hill Inc., New York, NY.Google ScholarGoogle Scholar
  68. Robinson, I. 1979. A comparison of numerical integration programs. J. Comput. Appl. Math. 5, 3, 207--223.Google ScholarGoogle ScholarCross RefCross Ref
  69. Romberg, W. 1955. Vereinfachte numerische Integration. Det Kongelige Norske Videnskabers Selskab Forhandlinger 28, 7, 30--36.Google ScholarGoogle Scholar
  70. Rowland, J. H. and Varol, Y. L. 1972. Exit criteria for Simpson's compound rule. Math. Comput. 26, 119, 699--703.Google ScholarGoogle Scholar
  71. Rutishauser, H. 1976. Vorlesungen über numerische Mathematik, Band 1. Birkhäuser Verlag, Basel and Stuttgart.Google ScholarGoogle Scholar
  72. Schwarz, H. R. 1997. Numerische Mathematik 4th Ed. B. G. Teubner, Stuttgart. With a contribution by Jörg Waldvogel.Google ScholarGoogle Scholar
  73. Shampine, L. 2008. Vectorized adaptive quadrature in MATLAB. J. Comput. and Appl. Math. 211, 2, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Skeel, R. D. and Keiper, J. B. 1993. Elementary Numerical Computing with Mathematica. McGraw-Hill, Inc., New York, NY. Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Stiefel, E. 1961. Einführung in die numerische Mathematik. B. G. Teubner Verlagsgesellschaft, Stuttgart.Google ScholarGoogle Scholar
  76. The Mathworks 2005. MATLAB 7.0 Release Notes. The Mathworks, Natick, MA.Google ScholarGoogle Scholar
  77. Venter, A. and Laurie, D. P. 2002. A doubly adaptive integration algorithm using stratified rules. BIT Numer. Math. 42, 1, 183--193.Google ScholarGoogle ScholarCross RefCross Ref
  78. Villars, D. S. 1956. Use of the IBM 701 computer for quantum mechanical calculations II. overlap integral. Tech. rep. 5257, U.S. Naval Ordnance Test Station, China Lake, CA.Google ScholarGoogle Scholar
  79. Wynn, P. 1956. On a device for computing the em(sn) transformation. Math. Tables Other Aids Comput. 10, 54, 91--96.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A review of error estimation in adaptive quadrature

              Recommendations

              Comments

              Login options

              Check if you have access through your login credentials or your institution to get full access on this article.

              Sign in

              Full Access

              • Published in

                cover image ACM Computing Surveys
                ACM Computing Surveys  Volume 44, Issue 4
                August 2012
                318 pages
                ISSN:0360-0300
                EISSN:1557-7341
                DOI:10.1145/2333112
                Issue’s Table of Contents

                Copyright © 2012 ACM

                Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                Publisher

                Association for Computing Machinery

                New York, NY, United States

                Publication History

                • Published: 7 September 2012
                • Accepted: 1 April 2011
                • Revised: 1 November 2010
                • Received: 1 March 2010
                Published in csur Volume 44, Issue 4

                Permissions

                Request permissions about this article.

                Request Permissions

                Check for updates

                Qualifiers

                • research-article
                • Research
                • Refereed

              PDF Format

              View or Download as a PDF file.

              PDF

              eReader

              View online with eReader.

              eReader