Skip to main content
Log in

Target templates: the precision of mental representations affects attentional guidance and decision-making in visual search

  • Published:
Attention, Perception, & Psychophysics Aims and scope Submit manuscript

Abstract

When people look for things in the environment, they use target templates—mental representations of the objects they are attempting to locate—to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers’ templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We also examined “time to fixate” the target as a measure of scanning behavior in each of the eye-tracking studies (e.g., Castelhano, Pollatsek, & Cave, 2008). The results were entirely consistent with the findings from scan-path ratios. We therefore chose to report SPRs, owing to their straightforward interpretation; specifically, that a SPR of 1.0 indicates perfect attentional guidance.

References

  • Alexander, R. G., & Zelinsky, G. J. (2011). Visual similarity effects in categorical search. Journal of Vision, 11, 1–15. doi:10.1167/11.8.9

    Google Scholar 

  • Al-Aidroos, N., Emrich, S. M., Ferber, S., & Pratt, J. (2012). Visual working memory supports the inhibition of previously processed information: Evidence from preview search. Journal of Experimental Psychology: Human Perception and Performance, 38, 643–663. doi:10.1037/a0025707

    PubMed  Google Scholar 

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106–111. doi:10.1111/j.0963-7214.2004.01502006.x

    PubMed  Google Scholar 

  • Anderson, D. E., Vogel, E. K., & Awh, E. (2011). Precision in visual working memory reaches a stable plateau when individual item limits are exceeded. Journal of Neuroscience, 31, 1128–1138. doi:10.1523/JNEUROSCI.4125-10.2011

    PubMed  Google Scholar 

  • Arita, J. T., Carlisle, N. B., & Woodman, G. F. (2012). Templates for rejection: Configuring attention to ignore task-relevant features. Journal of Experimental Psychology: Human Perception and Performance, 38, 580–584. doi:10.1037/a0027885

    PubMed  Google Scholar 

  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628. doi:10.1111/j.1467-9280.2007.01949.x

    PubMed  Google Scholar 

  • Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321, 851–854. doi:10.1126/science.1158023

    PubMed Central  PubMed  Google Scholar 

  • Becker, S. I. (2011). Determinants of dwell time in visual search: Similarity or perceptual difficulty? PLoS One, 6, 1–5. doi:10.1371/journal.pone.0017740

    Google Scholar 

  • Becker, W. (1972). The control of eye movements in the saccadic system. Bibliotheca Opthalamologica, 82, 233–243.

    Google Scholar 

  • Bichot, N. P., Rossi, A. F., & Desimone, R. (2005). Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308, 529–534. doi:10.1126/science.1109676

    PubMed  Google Scholar 

  • Bond, A. B. (1983). Visual search and selection of natural stimuli in the pigeon: The attention threshold hypothesis. Journal of Experimental Psychology: Animal Behavior Processes, 9, 292–306. doi:10.1037/0097-7403.9.3.292

    PubMed  Google Scholar 

  • Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105, 14325–14329. doi:10.1073/pnas.0803390105

    Google Scholar 

  • Bravo, M. J., & Farid, H. (2009). The specificity of the search template. Journal of Vision, 9, 1–9. doi:10.1167/9.1.34

    PubMed  Google Scholar 

  • Bravo, M. J., & Farid, H. (2012). Task demands determine the specificity of the search template. Attention, Perception & Psychophysics, 74, 124–131. doi:10.3758/s13414-011-0224-5

    Google Scholar 

  • Buschman, T. J., Siegel, M., Roy, J. E., & Miller, E. K. (2011). Neural substrates of cognitive capacity limitations. Proceedings of the National Academy of Sciences, 108, 11252–11255. doi:10.1073/pnas.1104666108

    Google Scholar 

  • Castelhano, M. S., & Henderson, J. M. (2007). Initial scene representations facilitate eye movement guidance in visual search. Journal of Experimental Psychology: Human Perception and Performance, 33, 753–763. doi:10.1037/0096-1523.33.4.753

    PubMed  Google Scholar 

  • Castelhano, M. S., Pollatsek, A., & Cave, K. (2008). Typicality aids search for an unspecified target, but only in identification, and not in attentional guidance. Psychonomic Bulletin & Review, 15, 795–801. doi:10.3758/PBR.15.4.795

    Google Scholar 

  • Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 2918–2940.

    PubMed  Google Scholar 

  • Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. (1993). A neural basis for visual search in inferior temporal cortex. Nature, 363, 345–347. doi:10.1038/363345a0

    PubMed  Google Scholar 

  • Chen, X., & Zelinsky, G. J. (2006). Real-world search is dominated by top-down guidance. Vision Research, 46, 4118–4133. Real-world search is dominated by.

    PubMed  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.

    PubMed  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi:10.1146/annurev.ne.18.030195.001205

    PubMed  Google Scholar 

  • Deubel, H., Wolf, W., & Hauske, G. (1982). Corrective saccades: Effect of shifting the saccade goal. Vision Research, 22, 353–364. doi:10.1016/0042-6989(82)90151-1

    PubMed  Google Scholar 

  • Dowd, E. W., & Mitroff, S. R. (2013). Attentional guidance by working memory overrides saliency cues in visual search. Journal of Experimental Psychology: Human Perception and Performance, 39, 1786–1796. doi:10.1037/a0032548

    PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96, 433–458. doi:10.1037/0033-295X.96.3.433

    PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1992). Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance, 18, 578–588. doi:10.1037/0096-1523.18.2.578

    PubMed  Google Scholar 

  • Eckstein, M. P., Beutter, B. R., Pham, B. T., Shimozaki, S. S., & Stone, L. S. (2007). Similar neural representations of the target for saccades and perception during search. Neuron, 27, 1266–1270. doi:10.1523/JNEUROSCI.3975-06.2007

    Google Scholar 

  • Eimer, M., Kiss, M., & Nicholas, S. (2011). What top-down task sets do for us: An ERP study on the benefits of advance preparation in visual search. Journal of Experimental Psychology: Human Perception and Performance, 6, 1758–1766. doi:10.1037/a0024326

    Google Scholar 

  • Einhäuser, W., Rutishauser, U., & Koch, C. (2008). Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 8, 1–19. doi:10.1167/8.2.2

    Google Scholar 

  • Ethel, M. (1974). Saccadic suppression: A review and an analysis. Psychological Bulletin, 81, 899–917. doi:10.1037/h0037368

    Google Scholar 

  • Evans, K. K., Horowitz, T. S., Howe, P., Pedersini, R., Reijnen, E., Pinto, Y., … & Wolfe, J. M. (2011). Visual attention. Wiley Interdisciplinary Reviews: Cognitive Science, 2, 503–514. doi: 10.1002/wcs.127

  • Findlay, J. M. (1997). Saccade target selection during visual search. Vision Research, 37, 617–631. doi:10.1016/S0042-6989(96)00218-0

    PubMed  Google Scholar 

  • Frings, C., Wentura, D., & Wühr, P. (2012). On the fate of distractor representations. Journal of Experimental Psychology: Human Perception and Performance, 38, 570–575. doi:10.1037/a0027781

    PubMed  Google Scholar 

  • Godwin, H. J., Hout, M. C., & Menneer, T. (2014). Visual similarity is stronger than semantic similarity in guiding visual search for numbers. Psychonomic Bulletin & Review, 21, 689–695. doi:10.3758/s13423-013-0547-4

    Google Scholar 

  • Godwin, H. J., Menneer, T., Cave, K. R., & Donnelly, N. (2010). Dual-target search for high and low prevalence X-ray threat targets. Visual Cognition, 18, 1439–1463. doi:10.1080/13506285.2010.500605

    Google Scholar 

  • Goldstone, R. L., & Medin, D. L. (1994). The time course of comparison. Journal of Experimental Psychology: Learning, Memory, & Cognition, 20, 29–50. doi:10.1037/0278-7393.20.1.29

    Google Scholar 

  • Gorgoraptis, N., Catalao, R. F., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. Journal of Neuroscience, 31, 8502–8511. doi:10.1523/JNEUROSCI.0208-11.2011

    PubMed Central  PubMed  Google Scholar 

  • Henderson, J. M., Brockmole, J. R., Castelhano, M. S., & Mack, M. (2007). Visual saliency does not account for eye movements during visual search in real world scenes. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye movements: A window on mind and brain (pp. 537–562). Oxford, UK: Elsevier.

    Google Scholar 

  • Henderson, J. M., Malcolm, G. L., & Schandl, C. (2009). Searching in the dark: Cognitive relevance versus visual salience during search for non-salient objects in real-world scenes. Psychonomic Bulletin & Review, 16, 850–856. doi:10.3758/PBR.16.5.850

    Google Scholar 

  • Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory (VWM) in the control of gaze during visual search. Attention, Perception & Psychophysics, 71, 936–949. doi:10.3758/APP.71.4.936

    Google Scholar 

  • Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137, 163–181. doi:10.1037/0096-3445.137.1.163

    Google Scholar 

  • Hon, N., Thompson, R., Sigala, N., & Duncan, J. (2009). Evidence for long-range feedback in target detection: Detection of semantic targets modulates activity in early visual areas. Neuropsychologia, 47, 1721–1727. doi:10.1016/j.neuropsychologia.2009.02.011

    PubMed  Google Scholar 

  • Hout, M. C., & Goldinger, S. D. (2010). Learning in repeated visual search. Attention, Perception & Psychophysics, 72, 1267–1282. doi:10.3758/APP.72.5.1267

    Google Scholar 

  • Hout, M. C., & Goldinger, S. D. (2012). Incidental learning speeds visual search by lowering response thresholds, not by improving efficiency. Journal of Experimental Psychology: Human Perception and Performance, 38, 90–112. doi:10.1037/a0023894

    PubMed Central  PubMed  Google Scholar 

  • Hout, M. C., Goldinger, S. D., & Brady, K. J. (under review). MM-MDS: A multidimensional scaling database with similarity ratings for 240 object categories from the Massive Memory picture database.

  • Hout, M. C., Goldinger, S. D., & Ferguson, R. W. (2013). The versatility of SpAM: A fast, efficient spatial method of data collection for multidimensional scaling. Journal of Experimental Psychology: General, 142, 256–281. doi:10.1037/a0028860

    Google Scholar 

  • Houtkamp, R., & Roelfsema, P. R. (2009). Matching of visual input to only one item at any one time. Psychological Research, 73, 317–326. doi:10.1007/s00426-008-0157-3

    PubMed  Google Scholar 

  • Hwang, A. D., Higgins, E. C., & Pomplun, M. (2009). A model of top-down attentional control during visual search in complex scenes. Journal of Vision, 9, 1–18. doi:10.1167/9.5.25

    PubMed  Google Scholar 

  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506. A saliency-based search mechanism for overt and covert shifts of visual attention.

    PubMed  Google Scholar 

  • Itti, L., & Koch, C. (2001). Computational modeling of visual attention. Nature Reviews Neuroscience, 2, 194–203. doi:10.1038/35058500

    PubMed  Google Scholar 

  • Kapoula, Z., & Robinson, D. A. (1986). Saccadic undershoot is not inevitable: Saccades can be accurate. Vision Research, 26, 735–743. doi:10.1016/0042-6989(86)90087-8

    PubMed  Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4, 219–227. doi:10.1007/978-94-009-3833-5_5

    PubMed  Google Scholar 

  • Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Conceptual distinctiveness supports detailed visual long-term memory for real-world objects. Journal of Experimental Psychology: General, 139, 558–578. doi:10.1037/a0019165

    Google Scholar 

  • Kunar, M. A., Flusberg, S., & Wolfe, J. M. (2008). The role of memory and restricted context in repeated visual search. Perception & Psychophysics, 70, 314–328. doi:10.3758/PP.70.2.314

    Google Scholar 

  • Machizawa, M. G., Goh, C. C. W., & Driver, J. (2012). Human visual short-term memory precision can be varied at will when the number of retained items is low. Psychological Science, 23, 554–559. doi:10.1177/0956797611431988

    PubMed  Google Scholar 

  • Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9, 1–13. doi:10.1167/9.11.8

    PubMed  Google Scholar 

  • Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10, 1–11. doi:10.1167/10.2.4

    PubMed  Google Scholar 

  • Mannan, S. K., Kennard, C., Potter, D., Pan, Y., & Soto, D. (2010). Early oculomotor capture by new onsets driven by the contents of working memory. Vision Research, 50, 1590–1597. doi:10.1016/j.visres.2010.05.015

    PubMed  Google Scholar 

  • Medin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respects for similarity. Psychological Review, 100, 254–278. doi:10.1037/0033-295X.100.2.254

    Google Scholar 

  • Menneer, T., Barrett, D. J. K., Phillips, L., Donnelly, N., & Cave, K. R. (2007). Costs in searching for two targets: Dividing search across target types could improve airport security screening. Applied Cognitive Psychology, 21, 915–932. doi:10.1002/acp.1305

    Google Scholar 

  • Menneer, T., Cave, K. R., & Donnelly, N. (2009). The cost of search for multiple targets: Effects of practice and target similarity. Journal of Experimental Psychology: Applied, 15, 125–139. doi:10.1037/a0015331

    PubMed  Google Scholar 

  • Menneer, T., Donnelly, N., Godwin, H. J., & Cave, K. R. (2010). High or low target prevalence increases the dual-target cost in visual search. Journal of Experimental Psychology: Applied, 16, 133–144. doi:10.1037/a0019569

    PubMed  Google Scholar 

  • Moore, C. M., & Osman, A. M. (1993). Looking for two targets at the same time: One search or two? Perception & Psychophysics, 53, 381–390. doi:10.3758/BF03206781

    Google Scholar 

  • Mruczek, R. E. B., & Sheinberg, D. L. (2007). Activity of inferior temporal cortical neurons predicts recognition choice behavior and recognition time during visual search. Journal of Neuroscience, 27, 2825–2836. doi:10.1523/JNEUROSCI.4102-06.2007

    PubMed  Google Scholar 

  • Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45, 205–231.

  • Navalpakkam, V., & Itti, L. (2007). Search goal tunes visual features optimally. Neuron, 53, 605–617. doi:10.1016/j.neuron.2007.01.018

    PubMed  Google Scholar 

  • Neider, M. B., & Zelinsky, G. J. (2006). Searching for camouflaged targets: Effects of target-background similarity on visual search. Vision Research, 46, 2217–2235. doi:10.1016/j.visres.2006.01.006

    PubMed  Google Scholar 

  • Olivers, C. N., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32, 1243–1265. doi:10.1037/0096-1523.32.5.1243

    PubMed  Google Scholar 

  • Olivers, C. N., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15, 327–334. doi:10.1016/j.tics.2011.05.004

    PubMed  Google Scholar 

  • Palmer, E. M., Fencsik, D. E., Flusberg, S. J., Horowitz, T. S., & Wolfe, J. M. (2011). Signal detection evidence for limited capacity in visual search. Attention, Perception & Psychophysics, 73, 2413–2424. doi:10.3758/s13414-011-0199-2

    Google Scholar 

  • Peelen, M. V., Li, F.-F., & Kastner, S. (2009). Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 460, 94–97. doi:10.1038/nature08103

    PubMed Central  PubMed  Google Scholar 

  • Pietrewicz, A. T., & Kamil, A. C. (1979). Search image formation in the blue jay (Cyanocitta cristata). Science, 204, 1332–1333. doi:10.1126/science.204.4399.1332

    PubMed  Google Scholar 

  • Rao, R. P., Zelinsky, G. J., Hayhoe, M. M., & Ballard, D. H. (2002). Eye movements in iconic visual search. Vision Research, 42, 1447–1463. doi:10.1016/S0042-6989(02)00040-8

    PubMed  Google Scholar 

  • Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime User’s Guide. Pittsburgh, PA: Psychology Software Tools Inc.

    Google Scholar 

  • Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. The Quarterly Journal of Experimental Psychology, 62, 1904–1914. doi:10.1080/17470210902853530

    PubMed  Google Scholar 

  • Soto, D., Hodsoll, J., Rotshein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12, 342–348. doi:10.1016/j.tics.2008.05.007

    PubMed  Google Scholar 

  • Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652–654.

    PubMed  Google Scholar 

  • Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57, 421–457.

    PubMed  Google Scholar 

  • Sternberg, S. (1975). Memory scanning: New findings and current controversies. The Quarterly Journal of Experimental Psychology, 27, 1–32. doi:10.1080/14640747508400459

    Google Scholar 

  • Stokes, M., Thompson, R., Nobre, A. C., & Duncan, J. (2009). Shape-specific preparatory activitiy mediates attention to targets in human visual cortex. Proceedings of the National Academy of Sciences, 106, 19569–19574. doi:10.1073/pnas.0905306106

    Google Scholar 

  • Stroud, M. J., Menneer, T., Cave, K. R., Donnelly, N., & Rayner, K. (2011). Search for multiple targets of different colours: Misguided eye movements reveal a reduction of colour selectivity. Applied Cognitive Psychology, 25, 971–982. doi:10.1002/acp.1790

    Google Scholar 

  • Tatler, B. W., & Vincent, B. T. (2008). Systematic tendencies in scene-viewing. Journal of Eye Movement Research, 2, 1–18.

    Google Scholar 

  • Tatler, B. W., & Vincent, B. T. (2009). The prominence of behavioral biases in eye guidance. Visual Cognition, 17, 1029–1054. doi:10.1080/13506280902764539

    Google Scholar 

  • Thiele, A., Henning, P., Kubischik, M., & Hoffman, K. P. (2002). Neural mechanisms of saccadic suppression. Science, 295, 2460–2462. doi:10.1126/science.1068788

    PubMed  Google Scholar 

  • Tinbergen, N. (1960). The natural control of insects in pine woods: Vol. I. Factors influencing the intensity of predation by songbirds. Archives Neelandaises de Zoologie, 13, 265–343.

    Google Scholar 

  • Usher, M., & Neiber, E. (1996). Modeling the temporal dynamics of IT neurons in visual search: A mechanism for top-down selective attention. Journal of Cognitive Neuroscience, 8, 311–327. doi:10.1162/jocn.1996.8.4.311

    PubMed  Google Scholar 

  • Vickery, T. J., King, L., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5, 81–92. doi:10.1167/5.1.8

    PubMed  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503. doi:10.1038/nature04171

    PubMed  Google Scholar 

  • Watson, D. G., & Humphreys, G. W. (1997). Visual marking: Prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychological Review, 104, 90–122. doi:10.1037/0033-295X.104.1.90

    PubMed  Google Scholar 

  • Watson, D. G., & Humphreys, G. W. (2000). Visual marking: Evidence for inhibition using a probe-dot paradigm. Perception & Psychophysics, 62, 471–481. doi:10.3758/BF03212099

    Google Scholar 

  • Watson, D. G., Humphreys, G. W., & Olivers, C. N. L. (2003). Visual marking: Using time in visual selection. Trends in Cognitive Sciences, 7, 180–186. doi:10.1016/S1364-6613(03)00033-0

    PubMed  Google Scholar 

  • Wilschut, A., Theeuwes, J., & Olivers, C. N. L. (2013). The time it takes to turn a memory into a template. Journal of Vision, 13, 1–11. doi:10.1167/13.3.8

    Google Scholar 

  • Wilschut, A., Theeuwes, J., & Olivers, C. N. L. (2014). Priming and the guidance by visual and categorical templates in visual search. Frontiers in Psychology, 5, 1–12. doi:10.3389/fpsyg.2014.00148

    Google Scholar 

  • Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17, 118–124. doi:10.1093/cercor/bhm065

    Google Scholar 

  • Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202–238. doi:10.3758/BF03200774

    Google Scholar 

  • Wolfe, J. M. (2005). Watching single cells pay attention. Science, 308, 503–504. doi:10.1126/science.1112616

    PubMed  Google Scholar 

  • Wolfe, J. M. (2007). Guided Search 4.0: Current progress with a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). New York, NY, USA: Oxford University Press.

    Google Scholar 

  • Wolfe, J. M., Butcher, S. J., Lee, C., & Hyle, M. (2003). Changing your mind: On the contribution of top-down and bottom-up guidance in visual search for feature singletons. Journal of Experimental Psychology: Human Perception and Performance, 29, 483–502. doi:10.1037/0096-1523.29.2.483

    PubMed  Google Scholar 

  • Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided Search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15, 419–433. doi:10.1037/0096-1523.15.3.419

    PubMed  Google Scholar 

  • Wolfe, J. M., & Gancarz, G. (1996). Guided Search 3.0: A model of visual search catches up with Jay Enoch 40 years later. In V. Lakshminrayanan (Ed.), Basic and clinical applications of vision science (pp. 189–192). Dordrecht, Netherlands: Kluwer Academic.

    Google Scholar 

  • Wolfe, J. M., & Horowitz, T. S. (2004). What attributes guide the deployment of visual attention and how do they do it? Nature Reviews: Neuroscience, 5, 1–7. doi:10.1038/nrn1411

    Google Scholar 

  • Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44, 1411–1426. doi:10.1016/j.visres.2003.11.024

    PubMed  Google Scholar 

  • Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49, 2095–2103. doi:10.1016/j.visres.2009.05.017

    PubMed Central  PubMed  Google Scholar 

  • Yang, H., Chen, X., & Zelinsky, G. J. (2009). A new look at novelty effects: Guiding search away from old distractors. Attention, Perception & Psychophysics, 71, 554–564. doi:10.3758/APP.71.3.554

    Google Scholar 

  • Zelinsky, G. J. (2008). A theory of eye movements during target acquisition. Psychological Review, 115, 787–835. doi:10.1037/a0013118

    PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., Meyers, E. M., Bichot, N. P., Serre, T., Poggio, T. A., & Desimone, R. (2011). Object decoding with attention in inferior temporal cortex. Proceedings of the National Academy of Sciences, 108, 8850–8855. doi:10.1073/pnas.1100999108

    Google Scholar 

  • Zhang, Y., Yang, H., Samaras, D., & Zelinsky, G. J. (2006). A computational model of eye movements during object class detection. In Y. Weiss, B. Scholkopf, & J. Platt (Eds.), Advances in neural information processing systems (Vol. 18, pp. 1609–1616). Cambridge, MA: MIT Press.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant 1 R01 HD075800-01 to Stephen D. Goldinger. We thank Kyle J. Brady for assistance in multidimensional scaling data analysis, and Alexi Rentzis, Lindsey Edgerton, Shelby Doyle, Taylor Thorn, Christina Molidor, Sarah Fialko, Mandana Minai, Deanna Masci, and Taylor Coopman for assistance in data collection. We also thank Carrick Williams and an anonymous reviewer for helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Hout.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hout, M.C., Goldinger, S.D. Target templates: the precision of mental representations affects attentional guidance and decision-making in visual search. Atten Percept Psychophys 77, 128–149 (2015). https://doi.org/10.3758/s13414-014-0764-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13414-014-0764-6

Keywords

Navigation