Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2020

17-01-2018 | Original Article

When the rhythm disappears and the mind keeps dancing: sustained effects of attentional entrainment

Auteurs: Sabrina Trapp, Ondrej Havlicek, Annett Schirmer, Peter E. Keller

Gepubliceerd in: Psychological Research | Uitgave 1/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Research has demonstrated that the human cognitive system allocates attention most efficiently to a stimulus that occurs in synchrony with an established rhythmic background. However, our environment is dynamic and constantly changing. What happens when rhythms to which our cognitive system adapted disappear? We addressed this question using a visual categorization task comprising emotional and neutral faces. The task was split into three blocks of which the first and the last were completed in silence. The second block was accompanied by an acoustic background rhythm that, for one group of participants, was synchronous with face presentations, and for another group was asynchronous. Irrespective of group, performance improved with background stimulation. Importantly, improved performance extended into the third silent block for the synchronous, but not for the asynchronous group. These data suggest that attentional entrainment resulting from rhythmic environmental regularities disintegrates only gradually after the regularities disappear.
Literatuur
go back to reference Anderson, B., & Sheinberg, D. L. (2008). Effects of temporal context and temporal expectancy on neural activity in inferior temporal cortex. Neuropsychologia, 46(4), 947–957.CrossRef Anderson, B., & Sheinberg, D. L. (2008). Effects of temporal context and temporal expectancy on neural activity in inferior temporal cortex. Neuropsychologia, 46(4), 947–957.CrossRef
go back to reference Besle, J., Schevon, C. A., Mehta, A. D., Lakatos, P., Goodman, R. R., McKhann, G. M., Emerson, R. G., & Schroeder, C. E. (2011). Tuning of the human neocortex to the temporal dynamics of attended events. Journal of Neuroscience, 31(9), 3176–3185.CrossRef Besle, J., Schevon, C. A., Mehta, A. D., Lakatos, P., Goodman, R. R., McKhann, G. M., Emerson, R. G., & Schroeder, C. E. (2011). Tuning of the human neocortex to the temporal dynamics of attended events. Journal of Neuroscience, 31(9), 3176–3185.CrossRef
go back to reference Brochard, R., Tassin, M., & Zagar, D. (2013). Got rhythm … for better or worse. Cross-modal effects of auditory rhythm on visual word recognition. Cognition, 127(2), 214–219.CrossRef Brochard, R., Tassin, M., & Zagar, D. (2013). Got rhythm … for better or worse. Cross-modal effects of auditory rhythm on visual word recognition. Cognition, 127(2), 214–219.CrossRef
go back to reference Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.CrossRef Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.CrossRef
go back to reference Chomiak, T., Watts, A., Meyer, N., Pereira, F. V., & Hu, B. (2017). A training approach to improve stepping automaticity while dual-tasking in Parkinson’s disease. Medicine, 96(5), e5934. Chomiak, T., Watts, A., Meyer, N., Pereira, F. V., & Hu, B. (2017). A training approach to improve stepping automaticity while dual-tasking in Parkinson’s disease. Medicine, 96(5), e5934.
go back to reference Correa, A., Lupiáñez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychonomic Bullentin & Review, 12(2), 328–334. Correa, A., Lupiáñez, J., & Tudela, P. (2005). Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychonomic Bullentin & Review, 12(2), 328–334.
go back to reference Correa, A., & Nobre, A. C. (2008). Neural modulation by regularity and passage of time. Journal of Neurophysiology, 100, 1649–1655.CrossRef Correa, A., & Nobre, A. C. (2008). Neural modulation by regularity and passage of time. Journal of Neurophysiology, 100, 1649–1655.CrossRef
go back to reference Coull, J. T., & Nobre, A. C. (19989. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18, 7426–7435. Coull, J. T., & Nobre, A. C. (19989. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. Journal of Neuroscience, 18, 7426–7435.
go back to reference Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. Journal of Neuroscience, 33, 4002–4010.CrossRef Cravo, A. M., Rohenkohl, G., Wyart, V., & Nobre, A. C. (2013). Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. Journal of Neuroscience, 33, 4002–4010.CrossRef
go back to reference Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York: Routledge. Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York: Routledge.
go back to reference Desimone, R., & Duncan, J. (1995). Neural mechanism of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRef Desimone, R., & Duncan, J. (1995). Neural mechanism of selective visual attention. Annual Review of Neuroscience, 18, 193–222.CrossRef
go back to reference Doherty, J. R., Rao, A., Mesulam, M. M., & Nobre, A. C. (2005). Synergistic effect of combined temporal and spatial expectations on visual attention.. Journal of Neuroscience, 25, 8259–8266.CrossRef Doherty, J. R., Rao, A., Mesulam, M. M., & Nobre, A. C. (2005). Synergistic effect of combined temporal and spatial expectations on visual attention.. Journal of Neuroscience, 25, 8259–8266.CrossRef
go back to reference Ebner, N. C., Riediger, M., & Lindenberger, U. (2010). FACES—a database of facial expressions in young, middle-aged, and older women and men. Development and validation. Behavioral Research Methods, 42, 351–362.CrossRef Ebner, N. C., Riediger, M., & Lindenberger, U. (2010). FACES—a database of facial expressions in young, middle-aged, and older women and men. Development and validation. Behavioral Research Methods, 42, 351–362.CrossRef
go back to reference Escoffier, N., Herrmann, C. S., & Schirmer, A. (2015). Auditory rhythms entrain visual processes in the human brain: Evidence from evoked oscillations and event-related potentials. NeuroImage, 111, 267–276.CrossRef Escoffier, N., Herrmann, C. S., & Schirmer, A. (2015). Auditory rhythms entrain visual processes in the human brain: Evidence from evoked oscillations and event-related potentials. NeuroImage, 111, 267–276.CrossRef
go back to reference Escoffier, N., Sheng, D. Y., & Schirmer, A. (2010). Unattended Musical Beats Enhance Visual Processing. Acta Psychologica, 135(1), 12–16.CrossRef Escoffier, N., Sheng, D. Y., & Schirmer, A. (2010). Unattended Musical Beats Enhance Visual Processing. Acta Psychologica, 135(1), 12–16.CrossRef
go back to reference Escoffier, N., & Tillmann, B. (2008). The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition, 107, 1070–1083.CrossRef Escoffier, N., & Tillmann, B. (2008). The tonal function of a task-irrelevant chord modulates speed of visual processing. Cognition, 107, 1070–1083.CrossRef
go back to reference Ghazanfar, A, Morrill, R. J., & Kayser, C. (2013). Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm. Proc Natl Acad Sci USA., 110, 1959–1963CrossRef Ghazanfar, A, Morrill, R. J., & Kayser, C. (2013). Monkeys are perceptually tuned to facial expressions that exhibit a theta-like speech rhythm. Proc Natl Acad Sci USA., 110, 1959–1963CrossRef
go back to reference Hallam, S., Price, J., & Katsarou, G. (2002). The effects of background music on primary school pupils’ task performance. Educational Studies, 28(2), 111–122.CrossRef Hallam, S., Price, J., & Katsarou, G. (2002). The effects of background music on primary school pupils’ task performance. Educational Studies, 28(2), 111–122.CrossRef
go back to reference Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences, 109(49), 20095–20100. Henry, M. J., & Obleser, J. (2012). Frequency modulation entrains slow neural oscillations and optimizes human listening behavior. Proceedings of the National Academy of Sciences, 109(49), 20095–20100.
go back to reference Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception, 20, 151–171.CrossRef Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception, 20, 151–171.CrossRef
go back to reference Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention and memory. Psychological Rev, 83(5), 323–355.CrossRef Jones, M. R. (1976). Time, our lost dimension: toward a new theory of perception, attention and memory. Psychological Rev, 83(5), 323–355.CrossRef
go back to reference Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRef Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRef
go back to reference Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.CrossRef Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13, 313–319.CrossRef
go back to reference Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice Hall. Kahneman, D. (1973). Attention and effort. Englewood Cliffs: Prentice Hall.
go back to reference Karageorghis, C. I., & Priest, D. L. (2011). Music in the exercise domain: a review and synthesis (Part II). International Review of Sport and Exercise Psychology, 5(1), 67–84.CrossRef Karageorghis, C. I., & Priest, D. L. (2011). Music in the exercise domain: a review and synthesis (Part II). International Review of Sport and Exercise Psychology, 5(1), 67–84.CrossRef
go back to reference Kirby, K. N., Gerlanc, D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods, 45(4), 905–927.CrossRef Kirby, K. N., Gerlanc, D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavior Research Methods, 45(4), 905–927.CrossRef
go back to reference Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320, 110–113.CrossRef Lakatos, P., Karmos, G., Mehta, A. D., Ulbert, I., & Schroeder, C. E. (2008). Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320, 110–113.CrossRef
go back to reference Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94, 1904–1911.CrossRef Lakatos, P., Shah, A. S., Knuth, K. H., Ulbert, I., Karmos, G., & Schroeder, C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology, 94, 1904–1911.CrossRef
go back to reference Large, E., & Jones, M. R. (1999). The dynamics of attending: How we track time varying events. Psychological Review, 106, 119–159.CrossRef Large, E., & Jones, M. R. (1999). The dynamics of attending: How we track time varying events. Psychological Review, 106, 119–159.CrossRef
go back to reference Nobre, A. C., Rohenkoh,l G., & Stokes, M. (2012). Nervous anticipation: Top-down biasing across space and time. In M. I. Posner (Ed.), Cognitive Neuroscience of Attention 2ed (pp. 159–186). New York: Guilford Press. Nobre, A. C., Rohenkoh,l G., & Stokes, M. (2012). Nervous anticipation: Top-down biasing across space and time. In M. I. Posner (Ed.), Cognitive Neuroscience of Attention 2ed (pp. 159–186). New York: Guilford Press.
go back to reference Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612.CrossRef Nozaradan, S., Peretz, I., & Keller, P. E. (2016). Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization. Scientific Reports, 6, 20612.CrossRef
go back to reference Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.CrossRef Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.CrossRef
go back to reference Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal expectation improves the quality of sensory information. Journal of Neuroscience, 32, 8424–8428.CrossRef Rohenkohl, G., Cravo, A. M., Wyart, V., & Nobre, A. C. (2012). Temporal expectation improves the quality of sensory information. Journal of Neuroscience, 32, 8424–8428.CrossRef
go back to reference Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.CrossRef Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.CrossRef
go back to reference Schirmer, A., Meck, W. H., & Penny, T. B. (2016). The Socio-Temporal Brain: Connecting People in Time. Trends in Cognitive Science, 20(10), 760–772.CrossRef Schirmer, A., Meck, W. H., & Penny, T. B. (2016). The Socio-Temporal Brain: Connecting People in Time. Trends in Cognitive Science, 20(10), 760–772.CrossRef
go back to reference Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neuroscience, 32(1), 9–18.CrossRef Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neuroscience, 32(1), 9–18.CrossRef
go back to reference Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., & Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cortex, 14(12), 1346–1357.CrossRef Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., & Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cortex, 14(12), 1346–1357.CrossRef
go back to reference Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies inauditory perception. Nature, 416(6876), 87–90.CrossRef Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies inauditory perception. Nature, 416(6876), 87–90.CrossRef
go back to reference Stupacher, J., Witte, M., Hove, M. J., & Wood, G. (2016). Neural entrainment in drum rhythms with silent breaks: Evidence from steady-state evoked and event-related potentials. Journal of Cognitive Neuroscience, 28(12), 1865–1877.CrossRef Stupacher, J., Witte, M., Hove, M. J., & Wood, G. (2016). Neural entrainment in drum rhythms with silent breaks: Evidence from steady-state evoked and event-related potentials. Journal of Cognitive Neuroscience, 28(12), 1865–1877.CrossRef
go back to reference Tal, I., Large, E. W., Rabinovitch, E., Wei, Y., Schroeder, C. E., Poeppel, D., & Golumbic, Z., E (2017). Neural entrainment to the beat: The “missing-pulse” phenomenon. Journal of Neuroscience, 37(26), 6331–6341.CrossRef Tal, I., Large, E. W., Rabinovitch, E., Wei, Y., Schroeder, C. E., Poeppel, D., & Golumbic, Z., E (2017). Neural entrainment to the beat: The “missing-pulse” phenomenon. Journal of Neuroscience, 37(26), 6331–6341.CrossRef
go back to reference Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The musical ear test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196.CrossRef Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The musical ear test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196.CrossRef
go back to reference Wickens, C. D. (1991). Processing resources and attention. In D. L. Damos (Ed.), Multipletask performance (pp. 3–34). London: Taylor and Francis. Wickens, C. D. (1991). Processing resources and attention. In D. L. Damos (Ed.), Multipletask performance (pp. 3–34). London: Taylor and Francis.
Metagegevens
Titel
When the rhythm disappears and the mind keeps dancing: sustained effects of attentional entrainment
Auteurs
Sabrina Trapp
Ondrej Havlicek
Annett Schirmer
Peter E. Keller
Publicatiedatum
17-01-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-0983-x

Andere artikelen Uitgave 1/2020

Psychological Research 1/2020 Naar de uitgave