Skip to main content
Top
Gepubliceerd in:

12-01-2024 | Research

When does imagery require motor resources? A commentary on Bach et al., 2022

Auteur: Gilles Vannuscorps

Gepubliceerd in: Psychological Research | Uitgave 6/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Bach, Frank, and Kunde introduce a hypothesis that encompasses two main claims: (1) motor imagery relies primarily on representations of the perceptual effects of actions, and (2) the engagement of motor resources provides access to the specific timing, kinematic or internal bodily state that characterize an action. In this commentary, I argue that the first claim is compelling and suggest some alternatives to the second one.
Literatuur
go back to reference De Lange, F. P., Roelofs, K., & Toni, I. (2008). Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex, 44(5), 494–506.CrossRefPubMed De Lange, F. P., Roelofs, K., & Toni, I. (2008). Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex, 44(5), 494–506.CrossRefPubMed
go back to reference Funk, M., & Brugger, P. (2008). Mental rotation of congenitally absent hands. Journal of the International Neuropsychological Society, 14(1), 81–89.CrossRefPubMed Funk, M., & Brugger, P. (2008). Mental rotation of congenitally absent hands. Journal of the International Neuropsychological Society, 14(1), 81–89.CrossRefPubMed
go back to reference Galvez-Pol, A., Forster, B., & Calvo-Merino, B. (2020). Beyond action observation: Neurobehavioral mechanisms of memory for visually perceived bodies and actions. Neuroscience & Biobehavioral Reviews, 116, 508–518.CrossRef Galvez-Pol, A., Forster, B., & Calvo-Merino, B. (2020). Beyond action observation: Neurobehavioral mechanisms of memory for visually perceived bodies and actions. Neuroscience & Biobehavioral Reviews, 116, 508–518.CrossRef
go back to reference Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878.CrossRefPubMed Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878.CrossRefPubMed
go back to reference Jeannerod, M. (1988). The neural and behavioural organization of goal-directed movements. Oxford University Press. Jeannerod, M. (1988). The neural and behavioural organization of goal-directed movements. Oxford University Press.
go back to reference Jeannerod, M., & Decety, J. (1995). Mental motor imagery: A window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732.CrossRefPubMed Jeannerod, M., & Decety, J. (1995). Mental motor imagery: A window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732.CrossRefPubMed
go back to reference Maimon-Mor, R. O., Schone, H. R., Moran, R., Brugger, P., & Makin, T. R. (2020). Motor control drives visual bodily judgements. Cognition, 196, 104120.CrossRefPubMedPubMedCentral Maimon-Mor, R. O., Schone, H. R., Moran, R., Brugger, P., & Makin, T. R. (2020). Motor control drives visual bodily judgements. Cognition, 196, 104120.CrossRefPubMedPubMedCentral
go back to reference Moreau, D. (2013). Motor expertise modulates movement processing in working memory. Acta Psychologica, 142(3), 356–361.CrossRefPubMed Moreau, D. (2013). Motor expertise modulates movement processing in working memory. Acta Psychologica, 142(3), 356–361.CrossRefPubMed
go back to reference Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326.CrossRefPubMed Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326.CrossRefPubMed
go back to reference Parsons, L. M. (1987). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology, 19(2), 178–241.CrossRefPubMed Parsons, L. M. (1987). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology, 19(2), 178–241.CrossRefPubMed
go back to reference Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61–78.CrossRefPubMed Ruffino, C., Papaxanthis, C., & Lebon, F. (2017). Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience, 341, 61–78.CrossRefPubMed
go back to reference Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., & Classen, J. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25(41), 9339–9346.CrossRefPubMed Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., & Classen, J. (2005). Formation of a motor memory by action observation. Journal of Neuroscience, 25(41), 9339–9346.CrossRefPubMed
go back to reference Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 168, 157–164.CrossRefPubMed Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 168, 157–164.CrossRefPubMed
go back to reference Ter Horst, A. C., Van Lier, R., & Steenbergen, B. (2010). Mental rotation task of hands: Differential influence number of rotational axes. Experimental Brain Research, 203, 347–354.CrossRefPubMedPubMedCentral Ter Horst, A. C., Van Lier, R., & Steenbergen, B. (2010). Mental rotation task of hands: Differential influence number of rotational axes. Experimental Brain Research, 203, 347–354.CrossRefPubMedPubMedCentral
go back to reference Vannuscorps, G., & Caramazza, A. (2015). Typical biomechanical bias in the perception of congenitally absent hands. Cortex, 67(147), e150. Vannuscorps, G., & Caramazza, A. (2015). Typical biomechanical bias in the perception of congenitally absent hands. Cortex, 67(147), e150.
go back to reference Vannuscorps, G., & Caramazza, A. (2016a). The origin of the biomechanical bias in apparent body movement perception. Neuropsychologia, 89, 281–286.CrossRefPubMed Vannuscorps, G., & Caramazza, A. (2016a). The origin of the biomechanical bias in apparent body movement perception. Neuropsychologia, 89, 281–286.CrossRefPubMed
go back to reference Vannuscorps, G., & Caramazza, A. (2016b). Impaired short-term memory for hand postures in individuals born without hands. Cortex, 83, 136–138.CrossRefPubMed Vannuscorps, G., & Caramazza, A. (2016b). Impaired short-term memory for hand postures in individuals born without hands. Cortex, 83, 136–138.CrossRefPubMed
go back to reference Vannuscorps, G., & Caramazza, A. (2023). Effector-specific motor simulation supplements core action recognition processes in adverse conditions. Social Cognitive and Affective Neuroscience, 18(1), 1–11.CrossRef Vannuscorps, G., & Caramazza, A. (2023). Effector-specific motor simulation supplements core action recognition processes in adverse conditions. Social Cognitive and Affective Neuroscience, 18(1), 1–11.CrossRef
go back to reference Vannuscorps, G., Pillon, A., & Andres, M. (2012). Effect of biomechanical constraints in the hand laterality judgment task: Where does it come from? Frontiers in Human Neuroscience, 6, 299.CrossRefPubMedPubMedCentral Vannuscorps, G., Pillon, A., & Andres, M. (2012). Effect of biomechanical constraints in the hand laterality judgment task: Where does it come from? Frontiers in Human Neuroscience, 6, 299.CrossRefPubMedPubMedCentral
go back to reference Vannuscorps, G., Andres, M., & Pillon, A. (2013). When does action comprehension need motor involvement? Evidence from upper limb aplasia. Cognitive Neuropsychology, 30(4), 253–283.CrossRefPubMed Vannuscorps, G., Andres, M., & Pillon, A. (2013). When does action comprehension need motor involvement? Evidence from upper limb aplasia. Cognitive Neuropsychology, 30(4), 253–283.CrossRefPubMed
go back to reference Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5(11), 487–494.CrossRefPubMed Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5(11), 487–494.CrossRefPubMed
Metagegevens
Titel
When does imagery require motor resources? A commentary on Bach et al., 2022
Auteur
Gilles Vannuscorps
Publicatiedatum
12-01-2024
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2024
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-023-01917-6