Skip to main content
Top
Gepubliceerd in:

08-03-2024 | Commentary

When better is the enemy of good: two cautionary tales of conceptual validity versus parsimony in clinical psychometric research

Auteurs: Carolyn E. Schwartz, Katrina Borowiec, Bruce D. Rapkin

Gepubliceerd in: Quality of Life Research | Uitgave 6/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

This paper presents an empirical challenge to the assumption that an item-response theory analysis always yields a better measure of a clinical construct. We summarize results from two measurement development studies that showed that such an analysis lost important content reflecting the conceptual model (“conceptual validity”). The cost of parsimony may thus be too high. Conceptual models that form the foundation of QOL measurement reflect the patient’s experience. This experience may include concepts and items that are psychometrically “redundant” but capture distinct features of the concept. Good measurement is likely a balance between relying on IRT’s quantitative metrics and recognizing the importance of conceptual validity and clinical utility.
Voetnoten
1
“Scoring rules” refers to the scoring algorithm recommended by the measure developers. It may be a simple sum or an IRT score based on the statistical model used.
 
2
All modifications were done with written permission from Dr. David Cella, head of the PROMIS and Neuro-QOL endeavors.
 
3
In the published DMD paper, references to the EFA were removed because the reviewers believed that implementing an EFA and CFA on the same sample in training and validation analyses was somehow improper. Rather than argue, we removed reference to the EFA. In the future, however, we will not remove mention of EFAs going forward, as the use of training and validation analyses on different subsets of the sample represents good practice and is standard for psychometric development. Using CFA to get model fit statistics on the EFA model determined to be the best is also good practice.
 
4
Based on Alchemer survey engine’s testing software.
 
Literatuur
1.
go back to reference Nunnally, J. C. (1994). Psychometric Theory (3rd ed.). Tata McGraw-Hill Education. Nunnally, J. C. (1994). Psychometric Theory (3rd ed.). Tata McGraw-Hill Education.
2.
go back to reference Reeve, B. B., Wyrwich, K. W., Wu, A. W., Velikova, G., Terwee, C. B., Snyder, C. F., et al. (2013). ISOQOL recommends minimum standards for patient-reported outcome measures used in patient-centered outcomes and comparative effectiveness research. Quality of Life Research, 22(8), 1889–1905.CrossRefPubMed Reeve, B. B., Wyrwich, K. W., Wu, A. W., Velikova, G., Terwee, C. B., Snyder, C. F., et al. (2013). ISOQOL recommends minimum standards for patient-reported outcome measures used in patient-centered outcomes and comparative effectiveness research. Quality of Life Research, 22(8), 1889–1905.CrossRefPubMed
3.
go back to reference Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Lawrence Erlbaum Associates. Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Lawrence Erlbaum Associates.
4.
go back to reference Reise, S. P., & Revicki, D. A. (2014). Handbook of item response theory modeling: Applications to typical performance assessment. Routledge.CrossRef Reise, S. P., & Revicki, D. A. (2014). Handbook of item response theory modeling: Applications to typical performance assessment. Routledge.CrossRef
5.
go back to reference Blanchin, M., Guilleux, A., Hardouin, J.-B., & Sébille, V. (2020). Comparison of structural equation modelling, item response theory and Rasch measurement theory-based methods for response shift detection at item level: A simulation study. Statistical Methods in Medical Research., 29(4), 1015–1029.CrossRefPubMed Blanchin, M., Guilleux, A., Hardouin, J.-B., & Sébille, V. (2020). Comparison of structural equation modelling, item response theory and Rasch measurement theory-based methods for response shift detection at item level: A simulation study. Statistical Methods in Medical Research., 29(4), 1015–1029.CrossRefPubMed
8.
go back to reference Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual review of clinical psychology., 5, 27–48.CrossRefPubMed Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual review of clinical psychology., 5, 27–48.CrossRefPubMed
9.
go back to reference Fayers, P., & Hand, D. (1997). Factor analysis, causal indicators and quality of life. Quality of Life Research., 6, 139–150.PubMed Fayers, P., & Hand, D. (1997). Factor analysis, causal indicators and quality of life. Quality of Life Research., 6, 139–150.PubMed
10.
go back to reference Fayers, P., Groenvold, M., Hand, D. J., & Bjordal, K. (1998). Clinical impact versus factor analysis for quality of life questionnaire construction. Journal of clinical epidemiology., 51(3), 285–286.PubMed Fayers, P., Groenvold, M., Hand, D. J., & Bjordal, K. (1998). Clinical impact versus factor analysis for quality of life questionnaire construction. Journal of clinical epidemiology., 51(3), 285–286.PubMed
11.
go back to reference Fayers, P. M., Hand, D. J., Bjordal, K., & Groenvold, M. (1997). Causal indicators in quality of life research. Quality of life research., 6, 393–406.CrossRefPubMed Fayers, P. M., Hand, D. J., Bjordal, K., & Groenvold, M. (1997). Causal indicators in quality of life research. Quality of life research., 6, 393–406.CrossRefPubMed
12.
go back to reference Fayers, P. M., & Hand, D. J. (2002). Causal variables, indicator variables and measurement scales: An example from quality of life. Journal of the Royal Statistical Society: Series A (Statistics in Society)., 165(2), 233–253.CrossRef Fayers, P. M., & Hand, D. J. (2002). Causal variables, indicator variables and measurement scales: An example from quality of life. Journal of the Royal Statistical Society: Series A (Statistics in Society)., 165(2), 233–253.CrossRef
13.
go back to reference Bollen, K. A., & Bauldry, S. (2011). Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods., 16(3), 265–284.CrossRefPubMedPubMedCentral Bollen, K. A., & Bauldry, S. (2011). Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods., 16(3), 265–284.CrossRefPubMedPubMedCentral
14.
go back to reference Juniper, E. F., Guyatt, G. H., Streiner, D. L., & King, D. R. (1997). Clinical impact versus factor analysis for quality of life questionnaire construction. Journal of Clinical Epidemiology., 50(3), 233–238.CrossRefPubMed Juniper, E. F., Guyatt, G. H., Streiner, D. L., & King, D. R. (1997). Clinical impact versus factor analysis for quality of life questionnaire construction. Journal of Clinical Epidemiology., 50(3), 233–238.CrossRefPubMed
15.
go back to reference Schwartz, C. E., Merriman, M. P., Reed, G., & Byock, I. (2005). Evaluation of the Missoula-VITAS Quality of Life Index - Revised: Research tool or clinical tool? Journal of Palliative Medicine., 8(1), 121–135.CrossRefPubMed Schwartz, C. E., Merriman, M. P., Reed, G., & Byock, I. (2005). Evaluation of the Missoula-VITAS Quality of Life Index - Revised: Research tool or clinical tool? Journal of Palliative Medicine., 8(1), 121–135.CrossRefPubMed
16.
go back to reference Schwartz, C. E., Stark, R. B., Cella, D., Borowiec, K., Gooch, K. L., & Audhya, I. F. (2021). Measuring Duchenne muscular dystrophy impact: Development of a proxy-reported measure derived from PROMIS item banks. Orphanet Journal of Rare Diseases., 16, 487.CrossRefPubMedPubMedCentral Schwartz, C. E., Stark, R. B., Cella, D., Borowiec, K., Gooch, K. L., & Audhya, I. F. (2021). Measuring Duchenne muscular dystrophy impact: Development of a proxy-reported measure derived from PROMIS item banks. Orphanet Journal of Rare Diseases., 16, 487.CrossRefPubMedPubMedCentral
17.
go back to reference Schwartz CE, Borowiec K. Development and Validation of the HDSIMTM Tool: a Measure of Hemorrhoid Disease Symptom Impact. Quality of Life Research. 2024 (in press) Schwartz CE, Borowiec K. Development and Validation of the HDSIMTM Tool: a Measure of Hemorrhoid Disease Symptom Impact. Quality of Life Research. 2024 (in press)
18.
go back to reference Willis, G. B. (2004). Cognitive interviewing: A tool for improving questionnaire design. Sage Publications. Willis, G. B. (2004). Cognitive interviewing: A tool for improving questionnaire design. Sage Publications.
19.
go back to reference DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage publications. DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage publications.
20.
go back to reference Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. ERIC. Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. ERIC.
21.
go back to reference De Vet, H. C., Terwee, C. B., Mokkink, L. B., & Knol, D. L. (2011). Measurement in medicine: A practical guide. Cambridge University Press.CrossRef De Vet, H. C., Terwee, C. B., Mokkink, L. B., & Knol, D. L. (2011). Measurement in medicine: A practical guide. Cambridge University Press.CrossRef
22.
go back to reference Food and Drug Administration. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims. Silver Spring, MD: US Department of Health and Human Services Food and Drug Administration; 2009. Food and Drug Administration. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims. Silver Spring, MD: US Department of Health and Human Services Food and Drug Administration; 2009.
23.
go back to reference Hu, Lt., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRef Hu, Lt., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55.CrossRef
24.
go back to reference Cook, K. F., Kallen, M. A., & Amtmann, D. (2009). Having a fit: Impact of number of items and distribution of data on traditional criteria for assessing IRT’s unidimensionality assumption. Quality of Life Research., 18, 447–460.CrossRefPubMedPubMedCentral Cook, K. F., Kallen, M. A., & Amtmann, D. (2009). Having a fit: Impact of number of items and distribution of data on traditional criteria for assessing IRT’s unidimensionality assumption. Quality of Life Research., 18, 447–460.CrossRefPubMedPubMedCentral
25.
go back to reference Szabo, S. M., Salhany, R. M., Deighton, A., Harwood, M., Mah, J., & Gooch, K. L. (2021). The clinical course of Duchenne muscular dystrophy in the corticosteroid treatment era: A systematic literature review. Orphanet Journal of Rare Diseases., 16(1), 1–13.CrossRef Szabo, S. M., Salhany, R. M., Deighton, A., Harwood, M., Mah, J., & Gooch, K. L. (2021). The clinical course of Duchenne muscular dystrophy in the corticosteroid treatment era: A systematic literature review. Orphanet Journal of Rare Diseases., 16(1), 1–13.CrossRef
26.
go back to reference Pandya, S., James, K. A., Westfield, C., Thomas, S., Fox, D. J., Ciafaloni, E., & Moxley, R. T. (2018). Health profile of a cohort of adults with Duchenne muscular dystrophy. Muscle & Nerve., 58(2), 219–223.CrossRef Pandya, S., James, K. A., Westfield, C., Thomas, S., Fox, D. J., Ciafaloni, E., & Moxley, R. T. (2018). Health profile of a cohort of adults with Duchenne muscular dystrophy. Muscle & Nerve., 58(2), 219–223.CrossRef
Metagegevens
Titel
When better is the enemy of good: two cautionary tales of conceptual validity versus parsimony in clinical psychometric research
Auteurs
Carolyn E. Schwartz
Katrina Borowiec
Bruce D. Rapkin
Publicatiedatum
08-03-2024
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 6/2024
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-024-03617-z