Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2019

04-09-2017 | Original Article

Weber’s law in 2D and 3D grasping

Auteurs: Aviad Ozana, Tzvi Ganel

Gepubliceerd in: Psychological Research | Uitgave 5/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Visually guided grasping movements directed to real, 3D objects are characterized by a distinguishable trajectory pattern that evades the influence of Weber’s law, a basic principle of perception. Conversely, grasping trajectories directed to 2D line drawings of objects adhere to Weber’s law. It can be argued, therefore, that during 2D grasping, the visuomotor system fails at operating in analytic mode and is intruded by irrelevant perceptual information. Here, we explored the visual and tactile cues that enable such analytic processing during grasping. In Experiment 1, we compared grasping directed to 3D objects with grasping directed to 2D object photos. Grasping directed to photos adhered to Weber’s law, suggesting that richness in visual detail does not contribute to analytic processing. In Experiment 2, we tested whether the visual presentation of 3D objects could support analytic processing even when only partial object-specific tactile information is provided. Surprisingly, grasping could be performed in an analytic fashion, violating Weber’s law. In Experiment 3, participants were denied of any haptic feedback at the end of the movement and grasping trajectories again showed adherence to Weber’s law. Taken together, the findings suggest that the presentation of real objects combined with indirect haptic information at the end of the movement is sufficient to allow analytic processing during grasp.
Literatuur
go back to reference Bingham, G., Coats, R., & Mon-Williams, M. (2007). Natural prehension in trials without haptic feedback but only when calibration is allowed. Neuropsychologia, 45(2), 288–294.CrossRefPubMed Bingham, G., Coats, R., & Mon-Williams, M. (2007). Natural prehension in trials without haptic feedback but only when calibration is allowed. Neuropsychologia, 45(2), 288–294.CrossRefPubMed
go back to reference Bruno, N., Uccelli, S., Viviani, E., & de’Sperati, C. (2016). Both vision-for-perception and vision-for-action follow Weber’s law at small object sizes, but violate it at larger sizes. Neuropsychologia, 91, 327–334.CrossRefPubMed Bruno, N., Uccelli, S., Viviani, E., & de’Sperati, C. (2016). Both vision-for-perception and vision-for-action follow Weber’s law at small object sizes, but violate it at larger sizes. Neuropsychologia, 91, 327–334.CrossRefPubMed
go back to reference Christiansen, J. H., Christensen, J., Grünbaum, T., & Kyllingsbæk, S. (2014). A common representation of spatial features drives action and perception: grasping and judging object features within trials. PloS one, 9(5), e94744.CrossRefPubMedPubMedCentral Christiansen, J. H., Christensen, J., Grünbaum, T., & Kyllingsbæk, S. (2014). A common representation of spatial features drives action and perception: grasping and judging object features within trials. PloS one, 9(5), e94744.CrossRefPubMedPubMedCentral
go back to reference De-Wit, L. H., Kubilius, J., de Beeck, H. P. O., & Wagemans, J. (2013). Configural gestalts remain nothing more than the sum of their parts in visual agnosia. I-Perception, 4(8), 493–497.CrossRefPubMedPubMedCentral De-Wit, L. H., Kubilius, J., de Beeck, H. P. O., & Wagemans, J. (2013). Configural gestalts remain nothing more than the sum of their parts in visual agnosia. I-Perception, 4(8), 493–497.CrossRefPubMedPubMedCentral
go back to reference Eloka, O., Feuerhake, F., Janczyk, M., & Franz, V. H. (2015). Garner-interference in left-handed awkward grasping. Psychological Research, 79(4), 579–589.CrossRefPubMed Eloka, O., Feuerhake, F., Janczyk, M., & Franz, V. H. (2015). Garner-interference in left-handed awkward grasping. Psychological Research, 79(4), 579–589.CrossRefPubMed
go back to reference Freud, E., & Ganel, T. (2015). Visual control of action directed toward two-dimensional objects relies on holistic processing of object shape. Psychonomic Bulletin & Review, 2003, 1377–1382.CrossRef Freud, E., & Ganel, T. (2015). Visual control of action directed toward two-dimensional objects relies on holistic processing of object shape. Psychonomic Bulletin & Review, 2003, 1377–1382.CrossRef
go back to reference Freud, E., Macdonald, S. N., Chen, J., Quinlan, D. J., Goodale, M. A., & Culham, J. C. (2017). Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex. doi:10.1016/j.cortex.2017.02.020. Freud, E., Macdonald, S. N., Chen, J., Quinlan, D. J., Goodale, M. A., & Culham, J. C. (2017). Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. Cortex. doi:10.​1016/​j.​cortex.​2017.​02.​020.
go back to reference Ganel, T., Chajut, E., & Algom, D. (2008a). Visual coding for action violates fundamental psychophysical principles. Current Biology, 18(14), 599–601.CrossRef Ganel, T., Chajut, E., & Algom, D. (2008a). Visual coding for action violates fundamental psychophysical principles. Current Biology, 18(14), 599–601.CrossRef
go back to reference Ganel, T., Chajut, E., Tanzer, M., & Algom, D. (2008). Response: When does grasping escape Weber's law?. Current Biology, 18(23), R1090–R1091.CrossRef Ganel, T., Chajut, E., Tanzer, M., & Algom, D. (2008). Response: When does grasping escape Weber's law?. Current Biology, 18(23), R1090–R1091.CrossRef
go back to reference Ganel, T., Freud, E., & Meiran, N. (2014). Action is immune to the effects of Weber’s law throughout the entire grasping trajectory. Journal of Vision, 14(7), 1–11.CrossRef Ganel, T., Freud, E., & Meiran, N. (2014). Action is immune to the effects of Weber’s law throughout the entire grasping trajectory. Journal of Vision, 14(7), 1–11.CrossRef
go back to reference Gibson, J. J. (1979). The Ecological Approach to the Visual Perception. Boston: Houghton Mifflin. Gibson, J. J. (1979). The Ecological Approach to the Visual Perception. Boston: Houghton Mifflin.
go back to reference Gonzalez, C. L. R., Ganel, T., Whitwell, R. L., Morrissey, B., & Goodale, M. A. (2008). Practice makes perfect, but only with the right hand: Sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Neuropsychologia, 46(2), 624–631.CrossRefPubMed Gonzalez, C. L. R., Ganel, T., Whitwell, R. L., Morrissey, B., & Goodale, M. A. (2008). Practice makes perfect, but only with the right hand: Sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Neuropsychologia, 46(2), 624–631.CrossRefPubMed
go back to reference Goodale, M. A., & Ganel, T. (2015). Different modes of visual organization for perception and for action. Oxford Handbook of Perceptual Organization, 3(1), 1–19. Goodale, M. A., & Ganel, T. (2015). Different modes of visual organization for perception and for action. Oxford Handbook of Perceptual Organization, 3(1), 1–19.
go back to reference Goodale, M. A., Jakobson, L. S., & Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32(94), 1159–1178.CrossRefPubMed Goodale, M. A., Jakobson, L. S., & Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32(94), 1159–1178.CrossRefPubMed
go back to reference Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(I), 20–25.CrossRefPubMed Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(I), 20–25.CrossRefPubMed
go back to reference Goodale, M. A., & Milner, A. D. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154.CrossRefPubMed Goodale, M. A., & Milner, A. D. (1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349(6305), 154.CrossRefPubMed
go back to reference Heath, M., Manzone, J., Khan, M., & Jazi, S. D. (2017). Vision for action and perception elicit dissociable adherence to Weber’s law across a range of ‘graspable’ target objects. Experimental Brain Research. doi:10.1007/s00221-017-5025-1.CrossRefPubMed Heath, M., Manzone, J., Khan, M., & Jazi, S. D. (2017). Vision for action and perception elicit dissociable adherence to Weber’s law across a range of ‘graspable’ target objects. Experimental Brain Research. doi:10.​1007/​s00221-017-5025-1.CrossRefPubMed
go back to reference Hesse, C., Ball, K., & Schenk, T. (2012). Visuomotor performance based on peripheral vision is impaired in the visual form agnostic patient DF. Neuropsychologia, 50(1), 90–97.CrossRefPubMed Hesse, C., Ball, K., & Schenk, T. (2012). Visuomotor performance based on peripheral vision is impaired in the visual form agnostic patient DF. Neuropsychologia, 50(1), 90–97.CrossRefPubMed
go back to reference Himmelbach, M., Boehme, R., & Karnath, H. O. (2012). 20 years later: A second look on DF’s motor behaviour. Neuropsychologia, 50(1), 139–144.CrossRefPubMed Himmelbach, M., Boehme, R., & Karnath, H. O. (2012). 20 years later: A second look on DF’s motor behaviour. Neuropsychologia, 50(1), 139–144.CrossRefPubMed
go back to reference Holmes, S. A., & Heath, M. (2013). Goal-directed grasping: The dimensional properties of an object influence the nature of the visual information mediating aperture shaping. Brain and Cognition, 82(1), 18–24.CrossRefPubMed Holmes, S. A., & Heath, M. (2013). Goal-directed grasping: The dimensional properties of an object influence the nature of the visual information mediating aperture shaping. Brain and Cognition, 82(1), 18–24.CrossRefPubMed
go back to reference Hosang, S., Chan, J., Jazi, S. D., & Heath, M. (2016). Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration. Experimental Brain Research, 234(4), 945–954. Hosang, S., Chan, J., Jazi, S. D., & Heath, M. (2016). Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration. Experimental Brain Research, 234(4), 945–954.
go back to reference Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: A kinematic analysis of human prehension. Experimental Brain Research, 86(1), 199–208.CrossRefPubMed Jakobson, L. S., & Goodale, M. A. (1991). Factors affecting higher-order movement planning: A kinematic analysis of human prehension. Experimental Brain Research, 86(1), 199–208.CrossRefPubMed
go back to reference Janczyk, M., Franz, V. H., & Kunde, W. (2010). Grasping for parsimony: Do some motor actions escape dorsal processing? Neuropsychologia, 48(12), 3405–3415.CrossRefPubMed Janczyk, M., Franz, V. H., & Kunde, W. (2010). Grasping for parsimony: Do some motor actions escape dorsal processing? Neuropsychologia, 48(12), 3405–3415.CrossRefPubMed
go back to reference Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology (Revue canadienne de psychologie expérimentale), 63(2), 124.CrossRef Jarmasz, J., & Hollands, J. G. (2009). Confidence intervals in repeated-measures designs: The number of observations principle. Canadian Journal of Experimental Psychology (Revue canadienne de psychologie expérimentale), 63(2), 124.CrossRef
go back to reference Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254.CrossRefPubMed Jeannerod, M. (1984). The timing of natural prehension movements. Journal of Motor Behavior, 16(3), 235–254.CrossRefPubMed
go back to reference Johansson, R. S., & Flanagan, J. R. (2009). Sensory control of object manipulation. Sensorimotor Control of Grasping: Physiology and Pathophysiology, 141–160. Johansson, R. S., & Flanagan, J. R. (2009). Sensory control of object manipulation. Sensorimotor Control of Grasping: Physiology and Pathophysiology, 141–160.
go back to reference Kwok, R. M., & Braddick, O. J. (2003). When does the Titchener Circles illusion exert an effect on grasping? Two- and three-dimensional targets. Neuropsychologia, 41(8), 932–940.CrossRefPubMed Kwok, R. M., & Braddick, O. J. (2003). When does the Titchener Circles illusion exert an effect on grasping? Two- and three-dimensional targets. Neuropsychologia, 41(8), 932–940.CrossRefPubMed
go back to reference Löwenkamp, C., Gärtner, W., Haus, I. D., & Franz, V. H. (2015). Semantic grasping escapes Weber’s law. Neuropsychologia, 70, 235–245.CrossRefPubMed Löwenkamp, C., Gärtner, W., Haus, I. D., & Franz, V. H. (2015). Semantic grasping escapes Weber’s law. Neuropsychologia, 70, 235–245.CrossRefPubMed
go back to reference Manzone, J., Jazi, S. D., Whitwell, R. L., & Heath, M. (2017). Biomechanical constraints do not influence pantomime-grasping adherence to Weber’s law: A reply to Utz et al. (2015). Vision Research, 130, 31–35.CrossRefPubMed Manzone, J., Jazi, S. D., Whitwell, R. L., & Heath, M. (2017). Biomechanical constraints do not influence pantomime-grasping adherence to Weber’s law: A reply to Utz et al. (2015). Vision Research, 130, 31–35.CrossRefPubMed
go back to reference Pavese, A., Buxbaum, L. J., & Laurel, J. (2002). Action matters : The role of action plans and object affordances in selection for action. Visual Cognition, 9, 559–590.CrossRef Pavese, A., Buxbaum, L. J., & Laurel, J. (2002). Action matters : The role of action plans and object affordances in selection for action. Visual Cognition, 9, 559–590.CrossRef
go back to reference Schenk, T. (2012). No dissociation between perception and action in patient DF when haptic feedback is withdrawn. Journal of Neuroscience, 32(6), 2013–2017.CrossRefPubMed Schenk, T. (2012). No dissociation between perception and action in patient DF when haptic feedback is withdrawn. Journal of Neuroscience, 32(6), 2013–2017.CrossRefPubMed
go back to reference Smeets, J. B., & Brenner, E. (2008). Grasping Weber’s law. Current Biology, 18(23), R1089–R1090.CrossRefPubMed Smeets, J. B., & Brenner, E. (2008). Grasping Weber’s law. Current Biology, 18(23), R1089–R1090.CrossRefPubMed
go back to reference Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 1, 1–10.CrossRef Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A., & Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports, 1, 1–10.CrossRef
go back to reference Snow, J. C., Strother, L., & Humphreys, G. W. (2014). Haptic shape processing in visual cortex. Journal of Cognitive Neuroscience, 26(5), 1154–1167.CrossRefPubMed Snow, J. C., Strother, L., & Humphreys, G. W. (2014). Haptic shape processing in visual cortex. Journal of Cognitive Neuroscience, 26(5), 1154–1167.CrossRefPubMed
go back to reference Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830–846.PubMed Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 830–846.PubMed
go back to reference Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116(2), 185–203.CrossRefPubMed Tucker, M., & Ellis, R. (2004). Action priming by briefly presented objects. Acta Psychologica, 116(2), 185–203.CrossRefPubMed
go back to reference Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). Cambridge: MIT Press. Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586). Cambridge: MIT Press.
go back to reference Utz, K. S., Hesse, C., Aschenneller, N., & Schenk, T. (2015). Biomechanical factors may explain why grasping violates Weber’s law. Vision Research, 111, 22–30.CrossRefPubMed Utz, K. S., Hesse, C., Aschenneller, N., & Schenk, T. (2015). Biomechanical factors may explain why grasping violates Weber’s law. Vision Research, 111, 22–30.CrossRefPubMed
go back to reference Westwood, D. A., Danckert, J., Servos, P., & Goodale, M. A. (2002). Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Experimental Brain Research, 144(2), 262–267.CrossRefPubMed Westwood, D. A., Danckert, J., Servos, P., & Goodale, M. A. (2002). Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. Experimental Brain Research, 144(2), 262–267.CrossRefPubMed
go back to reference Whitwell, R. L., Ganel, T., Byrne, C. M., & Goodale, M. A. (2015). Real-time vision, tactile cues, and visual form agnosia: Removing haptic feedback from a “natural” grasping task induces pantomime-like grasps. Frontiers in Human Neuroscience, 9, 216.CrossRefPubMedPubMedCentral Whitwell, R. L., Ganel, T., Byrne, C. M., & Goodale, M. A. (2015). Real-time vision, tactile cues, and visual form agnosia: Removing haptic feedback from a “natural” grasping task induces pantomime-like grasps. Frontiers in Human Neuroscience, 9, 216.CrossRefPubMedPubMedCentral
go back to reference Whitwell, R. L., Milner, A. D., Cavina-Pratesi, C., Byrne, C. M., & Goodale, M. A. (2014). DF’s visual brain in action: the role of tactile cues. Neuropsychologia, 55, 41–50.CrossRefPubMed Whitwell, R. L., Milner, A. D., Cavina-Pratesi, C., Byrne, C. M., & Goodale, M. A. (2014). DF’s visual brain in action: the role of tactile cues. Neuropsychologia, 55, 41–50.CrossRefPubMed
Metagegevens
Titel
Weber’s law in 2D and 3D grasping
Auteurs
Aviad Ozana
Tzvi Ganel
Publicatiedatum
04-09-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0913-3

Andere artikelen Uitgave 5/2019

Psychological Research 5/2019 Naar de uitgave