Skip to main content
Top

2019 | OriginalPaper | Hoofdstuk

2. Wat is metabolisme?

Auteur : Prof. dr. F.C. Schuit

Gepubliceerd in: Leerboek metabolisme en voeding

Uitgeverij: Bohn Stafleu van Loghum

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Hoofdstuk 2 geeft een overzicht van metabolisme. Anatomisch is het een netwerk van paden, zoals het stratenplan van een stad, waarlangs het verkeer van moleculen (metabolieten) naar alle gewenste bestemmingen gaat. We onderscheiden katabolisme (de afbraak en verbranding van biomoleculen) van anabolisme (de opbouw van biomoleculen uit bouwstenen). Functioneel is metabole flux belangrijk: dit is de intensiteit van het metabolietenverkeer die overeen moet stemmen met de behoeften van het lichaam. Hierbij worden drie doelstellingen bereikt: het leveren van voldoende energie (ATP), het leveren van voldoende bouwstenen en het leveren van reducerend vermogen (NADPH) voor reductieve biosynthese. Belangrijk is dat de metabole flux geregeld wordt tot het gewenste niveau. Dit gebeurt dankzij flux-controlerende enzymen waarvan het aantal of de activiteit kan veranderen door de inwerking van hormonen op de cel. In dit verband bekijken we stofwisselingsziekten (inborn errors of metabolism) die niet alleen de flux verstoren, maar ook metabolieten kunnen doen opstapelen.
Literatuur
go back to reference Bommer, G.T. & MacDougald, O.A. (2011) Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab. 13, 241–247. Bommer, G.T. & MacDougald, O.A. (2011) Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab. 13, 241–247.
go back to reference Bordone, L. & Guarente, L. (2005). Calory restriction, SIRT1 & metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298–305. Bordone, L. & Guarente, L. (2005). Calory restriction, SIRT1 & metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298–305.
go back to reference Cech, T.R. (2002). Ribozymes, the first 20 years. Biochem. Soc. Trans. 30, 1162–1166.CrossRef Cech, T.R. (2002). Ribozymes, the first 20 years. Biochem. Soc. Trans. 30, 1162–1166.CrossRef
go back to reference Cirulli, E. et al. (2019). Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metab. 29, 488–500.CrossRef Cirulli, E. et al. (2019). Profound Perturbation of the Metabolome in Obesity Is Associated with Health Risk. Cell Metab. 29, 488–500.CrossRef
go back to reference Collard, F. et al. (2016). A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol. 12, 601–607.CrossRef Collard, F. et al. (2016). A conserved phosphatase destroys toxic glycolytic side products in mammals and yeast. Nat Chem Biol. 12, 601–607.CrossRef
go back to reference Drucker, D.J. (2005). Biologic actions & therapeutic potential of the proglucagon-derived peptides. Nat. Clin. Pract. Endocrinol. Metab. 1, 22–31. Drucker, D.J. (2005). Biologic actions & therapeutic potential of the proglucagon-derived peptides. Nat. Clin. Pract. Endocrinol. Metab. 1, 22–31.
go back to reference Glazier, D.S. (2009). Ontogenetic body-mass scaling of resting metabolic rate covaries with species-specific metabolic level & body size in spiders & snakes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 153, 403–407. Glazier, D.S. (2009). Ontogenetic body-mass scaling of resting metabolic rate covaries with species-specific metabolic level & body size in spiders & snakes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 153, 403–407.
go back to reference Guasch-Ferré, M., Bhupathiraju, S.N. & Hu, F.B. (2018). Use of Metabolomics in Improving Assessment of Dietary Intake. Clin Chem. 64, 82–98. Guasch-Ferré, M., Bhupathiraju, S.N. & Hu, F.B. (2018). Use of Metabolomics in Improving Assessment of Dietary Intake. Clin Chem. 64, 82–98.
go back to reference Illig, T. et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–142.CrossRef Illig, T. et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 42, 137–142.CrossRef
go back to reference Joyce, G.F. (2002). The antiquity of RNA-based evolution. Nature 418, 214–221.CrossRef Joyce, G.F. (2002). The antiquity of RNA-based evolution. Nature 418, 214–221.CrossRef
go back to reference Koeberl, D.D., Pinto, C., Brown, T. & Chen, Y.T. (2009). Gene therapy for inherited metabolic disorders in companion animals. Ilar Journal 50, 122–127. Koeberl, D.D., Pinto, C., Brown, T. & Chen, Y.T. (2009). Gene therapy for inherited metabolic disorders in companion animals. Ilar Journal 50, 122–127.
go back to reference Lander, E.S. et al. (2001). Initial sequencing & analysis of the human genome. Nature. 409, 860–921. Lander, E.S. et al. (2001). Initial sequencing & analysis of the human genome. Nature. 409, 860–921.
go back to reference Levy, P.A. (2009). Inborn errors of metabolism: part 1: overview. Pediatr. Rev. 30, 131–137.CrossRef Levy, P.A. (2009). Inborn errors of metabolism: part 1: overview. Pediatr. Rev. 30, 131–137.CrossRef
go back to reference Li, M. (2018) Enzyme Replacement Therapy: A Review and Its Role in Treating Lysosomal Storage Diseases. Pediatr Ann 47, e191–e197.CrossRef Li, M. (2018) Enzyme Replacement Therapy: A Review and Its Role in Treating Lysosomal Storage Diseases. Pediatr Ann 47, e191–e197.CrossRef
go back to reference Lomax, J. (2005). Get ready to GO! A biologist’s guide to the Gene Ontology. Brief. Bioinform. 6, 298–304.CrossRef Lomax, J. (2005). Get ready to GO! A biologist’s guide to the Gene Ontology. Brief. Bioinform. 6, 298–304.CrossRef
go back to reference Lynn, F.C. (2009). Meta-regulation: microRNA regulation of glucose & lipid metabolism. Trends Endocrin. Metab. 20, 452–459. Lynn, F.C. (2009). Meta-regulation: microRNA regulation of glucose & lipid metabolism. Trends Endocrin. Metab. 20, 452–459.
go back to reference Maniscalco M, et al. (2019) Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv Clin Chem 88,121–149. Maniscalco M, et al. (2019) Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv Clin Chem 88,121–149.
go back to reference Orgel, L.E. (2004). Prebiotic chemistry & the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123. Orgel, L.E. (2004). Prebiotic chemistry & the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123.
go back to reference Peracchi A. (2018) The Limits of Enzyme Specificity and the Evolution of Metabolism. Trends Biochem Sci. 43, 984–996.CrossRef Peracchi A. (2018) The Limits of Enzyme Specificity and the Evolution of Metabolism. Trends Biochem Sci. 43, 984–996.CrossRef
go back to reference Piper, M.D. & Bartke, A. (2008). Diet & aging. Cell Metab. 8, 99–104. Piper, M.D. & Bartke, A. (2008). Diet & aging. Cell Metab. 8, 99–104.
go back to reference Reeves, G.A., Talavera, D. & Thornton, J.M. (2009). Genome & proteome annotation: organization, interpretation & integration. J. R. Soc. Interface. 6, 129–147. Reeves, G.A., Talavera, D. & Thornton, J.M. (2009). Genome & proteome annotation: organization, interpretation & integration. J. R. Soc. Interface. 6, 129–147.
go back to reference Reichert, L.J.M., van der Graaf, F. & Gerlag, P.G.G. (1989). Macro-creatine-kinase: niet iedere verhoogde CK-MB-activiteit duidt op een hartinfarct. Ned. Tijdschr. Geneesk. 133, 1278–1281. Reichert, L.J.M., van der Graaf, F. & Gerlag, P.G.G. (1989). Macro-creatine-kinase: niet iedere verhoogde CK-MB-activiteit duidt op een hartinfarct. Ned. Tijdschr. Geneesk. 133, 1278–1281.
go back to reference Secor, S.M. & Diamond, J. (1998). A vertebrate model of extreme physiological regulation. Nature. 395, 659–662. Secor, S.M. & Diamond, J. (1998). A vertebrate model of extreme physiological regulation. Nature. 395, 659–662.
go back to reference Shin, S.Y. et l. (2014). An atlas of genetic influences on human blood metabolites. Nat Genet. 46, 543–550. Shin, S.Y. et l. (2014). An atlas of genetic influences on human blood metabolites. Nat Genet. 46, 543–550.
go back to reference Simopoulos, A.P. (2010). Nutrigenetics/Nutrigenomics. Annu. Rev. Public Health. 31, 53–68.CrossRef Simopoulos, A.P. (2010). Nutrigenetics/Nutrigenomics. Annu. Rev. Public Health. 31, 53–68.CrossRef
go back to reference Speakman, J.R. (2005). Body size, energy metabolism & lifespan. J. Exp. Biol. 208, 1717–1730. Speakman, J.R. (2005). Body size, energy metabolism & lifespan. J. Exp. Biol. 208, 1717–1730.
go back to reference Trivedi, D.K., Hollywood, K.A. & Goodacre R. (2017). Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz Transl Med. 3, 294–305. Trivedi, D.K., Hollywood, K.A. & Goodacre R. (2017). Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz Transl Med. 3, 294–305.
go back to reference Veiga-da-Cunha M. et al. (2019). Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency. PNAS Epub ahead of print PMID: 30626647. Veiga-da-Cunha M. et al. (2019). Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency. PNAS Epub ahead of print PMID: 30626647.
Metagegevens
Titel
Wat is metabolisme?
Auteur
Prof. dr. F.C. Schuit
Copyright
2019
Uitgeverij
Bohn Stafleu van Loghum
DOI
https://doi.org/10.1007/978-90-368-2358-6_2