Skip to main content
Top
Gepubliceerd in: Journal of Foot and Ankle Research 1/2014

Open Access 01-04-2014 | Meeting abstract

Walking on an unpredictable irregular surface changes lower limb biomechanics and subjective perception compared to walking on a regular surface

Auteurs: Thorsten Sterzing, Charlotte Apps, Rui Ding, Jason Tak-Man Cheung

Gepubliceerd in: Journal of Foot and Ankle Research | bijlage 1/2014

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Background

Irregular surface conditions, for instance, are present during trail walking. Modified treadmills can be used to produce such surface conditions in a laboratory environment [1]. Walking on an irregular surface showed increased gait variability [2], which is regarded as a beneficial training stimulus [3]. Thus, this study examined the effects of an unpredictable irregular surface (UIS) on lower limb biomechanics, locomotion variability, and subjective perception during treadmill walking.

Methods

Seventeen young, male, active participants walked at 5 km/h on a treadmill with predictable regular surface (PRS) and with UIS. The UIS was created by randomly attaching EVA dome shaped inserts (ط: 140 mm) of different height (10 mm and 15 mm) and hardness (40 and 70 Asker C) to the treadmill. In-shoe plantar pressures (200 Hz, Pedar X System, Novel, Germany), lower limb kinematics (200 Hz, Vicon Peak, United Kingdom), and EMG signals of five lower limb muscles (3000 Hz, Telemyo 2400 G2, Noraxon, USA) were recorded. Eight perception items were assessed subjectively (9-point Likert Scale). Biomechanical parameter mean magnitudes and mean standard deviations, as variability measure, of 16 steps were calculated. Variables were compared between surfaces by Wilcoxon signed rank tests (p<.05).

Results

Step length increased, while step frequency decreased on UIS (p<.05). In-shoe pressure relative load magnitudes were consistent between conditions for five out of six masks, with only the medial midfoot loaded higher on UIS (p<.05). Relative load variability increased on UIS for all masks (p<.05). Small but significant kinematic differences at touchdown were found, with markedly greater variability on UIS: Reduced shoe-surface angle and ankle dorsiflexion, increased knee and hip flexion. The ankle joint showed decreased inversion at touchdown and increased maximum eversion on UIS, alongside higher variability (Table 1). Whereas muscle activity magnitude was similar for tibialis anterior and gastrocnemius medialis on both surfaces, it was increased for peroneus longus on UIS. In contrast, muscle activity variability was increased for tibialis anterior and gastrocnemius medialis on UIS, whereas it was similar for peroneus longus (Table 1). Subjectively, walking on UIS was more challenging (p<.05).
Table 1
Magnitude (Mag) and variability (Var) of kinematic and EMG parameters, significant surface comparisons (PRS vs. UIS) indicated in bold.
 
Frontal plane ankle angle [deg]
Normalized muscle activity during stance [%]
 
Inversion touchdown
Eversion maximum
Tibialis Anterior
Gastrocnemius Med
Peroneus Longus
 
Mag
Var
Mag
Var
Mag
Var
Mag
Var
Mag
Var
PRS
-2.8
1.5
7.7
0.9
19.1
2.6
31.3
4.9
38.8
9.7
UIS
-1.5
1.9
9.3
3.4
19.6
3.4
31.9
5.5
48.5
11.3
p-value
.006
.002
.001
001
.435
.013
.831
.049
.006
.163

Conclusion

On UIS, muscle specific motor control strategies were applied. Frontal plane stabilization effort of the ankle joint was consistently increased throughout all ground contacts. Sagittal ankle joint mobilization and/or stabilization depended on specific perturbation effects of single ground contacts. Walking on UIS induced a more variable gait, thus stimulating enhancement of motor control patterns, resembling a positive training mechanism [4].
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
1.
go back to reference Voloshina AS, Kuo AD, Daley MA, Ferris DP: Biomechanics and energetics of walking on uneven terrain. J Exp Biol. 2013, 216: 3963-3970. 10.1242/jeb.081711.PubMedCentralCrossRefPubMed Voloshina AS, Kuo AD, Daley MA, Ferris DP: Biomechanics and energetics of walking on uneven terrain. J Exp Biol. 2013, 216: 3963-3970. 10.1242/jeb.081711.PubMedCentralCrossRefPubMed
2.
go back to reference Gates DH, Wilken JM, Scott SJ, Sinitski EH, Dingwell JB: Kinematic strategies for walking across a destabilizing rock surface. Gait Posture. 2012, 35: 36-42. 10.1016/j.gaitpost.2011.08.001.PubMedCentralCrossRefPubMed Gates DH, Wilken JM, Scott SJ, Sinitski EH, Dingwell JB: Kinematic strategies for walking across a destabilizing rock surface. Gait Posture. 2012, 35: 36-42. 10.1016/j.gaitpost.2011.08.001.PubMedCentralCrossRefPubMed
3.
go back to reference Stöggl T, Müller E: Magnitude and variation in muscle activity during walking before and after a 10-week adaptation period using unstable (MBT) shoes. Footwear Sci. 2012, 4 (2): 131-143. 10.1080/19424280.2012.683882.CrossRef Stöggl T, Müller E: Magnitude and variation in muscle activity during walking before and after a 10-week adaptation period using unstable (MBT) shoes. Footwear Sci. 2012, 4 (2): 131-143. 10.1080/19424280.2012.683882.CrossRef
Metagegevens
Titel
Walking on an unpredictable irregular surface changes lower limb biomechanics and subjective perception compared to walking on a regular surface
Auteurs
Thorsten Sterzing
Charlotte Apps
Rui Ding
Jason Tak-Man Cheung
Publicatiedatum
01-04-2014
Uitgeverij
BioMed Central
Gepubliceerd in
Journal of Foot and Ankle Research / Uitgave bijlage 1/2014
Elektronisch ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-7-S1-A81

Andere artikelen bijlage 1/2014

Journal of Foot and Ankle Research 1/2014 Naar de uitgave