Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Journal of Child and Family Studies 5/2021

27-02-2021 | S.I. : Artificial Intelligence and Machine Learning

Using a Machine Learning Methodology to Analyze Reddit Posts regarding Child Feeding Information

Auteurs: Curtis Donelson, Carolyn Sutter, Giang V. Pham, Kanika Narang, Chen Wang, Joseph T. Yun

Gepubliceerd in: Journal of Child and Family Studies | Uitgave 5/2021

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The current research used human-coded Reddit posts categorized by already established food parenting concepts (coercive control, structure, autonomy support, recipes) as a basis for machine learning models, with the objective of providing insight into topics related to feeding children discussed on social media and to provide a way for future research to use our trained machine-learned model. Reddit posts from specific, parenting-related subreddits were collected and labeled as they related to aspects of child-feeding behavior. Posts were then put through text pre-processing, converted into TF-IDF vectors, and used to train support vector machine binary and multiclass classification models. Other classifiers and text-preprocessing steps were also tested. After training, the binary model was able to classify posts with 86.1% accuracy as being about child feeding or not, up from a baseline accuracy of 57.6%. The multiclass model yielded a 79.1% accuracy to classify posts related to four categories of child feeding concepts (coercive control, autonomy support, structure, recipes), up from a baseline of 51.9%. The comparison models were found to perform less favorably. The best performing binary model is publicly available for use via the Social Media Macroscope and we provide details on how to use this model. Information is presented such that other researchers and professionals interested in examining issues related to feeding children posted on social media could effectively utilize the same approach.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ammari, T., Schoenebeck, S., & Romero, D.M. (2018). Pseudonymous parents: comparing parenting roles and identities on the Mommit and Daddit subreddits. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 489): ACM. Ammari, T., Schoenebeck, S., & Romero, D.M. (2018). Pseudonymous parents: comparing parenting roles and identities on the Mommit and Daddit subreddits. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 489): ACM.
go back to reference Baker, S., Sanders, M. R., & Morawska, A. (2017). Who uses online parenting support? A cross-sectional survey exploring Australian parents’ internet use for parenting. Journal of Child and Family Studies, 26(3), 916–927. CrossRef Baker, S., Sanders, M. R., & Morawska, A. (2017). Who uses online parenting support? A cross-sectional survey exploring Australian parents’ internet use for parenting. Journal of Child and Family Studies, 26(3), 916–927. CrossRef
go back to reference Bartholomew, M. K., Schoppe-Sullivan, S. J., Glassman, M., Kamp Dush, C. M., & Sullivan, J. M. (2012). New parents’ Facebook use at the transition to parenthood. Family Relations, 61(3), 455–469. CrossRef Bartholomew, M. K., Schoppe-Sullivan, S. J., Glassman, M., Kamp Dush, C. M., & Sullivan, J. M. (2012). New parents’ Facebook use at the transition to parenthood. Family Relations, 61(3), 455–469. CrossRef
go back to reference Bellmore, A., Calvin, A. J., Xu, J.-M., & Zhu, X. (2015). The five W’s of “bullying” on Twitter: Who, what, why, where, and when. Computers in Human Behavior, 44, 305–314. CrossRef Bellmore, A., Calvin, A. J., Xu, J.-M., & Zhu, X. (2015). The five W’s of “bullying” on Twitter: Who, what, why, where, and when. Computers in Human Behavior, 44, 305–314. CrossRef
go back to reference Boe, B. (2015). PRAW: The Python Reddit API Wrapper. Boe, B. (2015). PRAW: The Python Reddit API Wrapper.
go back to reference Bridges, N., Howell, G., & Schmied, V. (2018). Exploring breastfeeding support on social media. International Breastfeeding Journal, 13(1), 22. CrossRef Bridges, N., Howell, G., & Schmied, V. (2018). Exploring breastfeeding support on social media. International Breastfeeding Journal, 13(1), 22. CrossRef
go back to reference Chen, T., & Guestrin, C. (2016). Xgboost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM. Chen, T., & Guestrin, C. (2016). Xgboost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). ACM.
go back to reference Chou, W.-Y. S., Oh, A., & Klein, W. M. (2018). Addressing health-related misinformation on social media. JAMA, 320(23), 2417–2418. CrossRef Chou, W.-Y. S., Oh, A., & Klein, W. M. (2018). Addressing health-related misinformation on social media. JAMA, 320(23), 2417–2418. CrossRef
go back to reference Duggan, M., Lenhart, A., Lampe, C., & Ellison, N.B. (2015). Parents and social media, (1–37). Pew Research Center. Duggan, M., Lenhart, A., Lampe, C., & Ellison, N.B. (2015). Parents and social media, (1–37). Pew Research Center.
go back to reference Dworkin, J., Rudi, J. H., & Hessel, H. (2018). The state of family research and social media. Journal of Family Theory & Review, 10(4), 796–813. CrossRef Dworkin, J., Rudi, J. H., & Hessel, H. (2018). The state of family research and social media. Journal of Family Theory & Review, 10(4), 796–813. CrossRef
go back to reference Farhadloo, M., Winneg, K., Chan, M.-P. S., Jamieson, K. H., & Albarracin, D. (2018). Associations of topics of discussion on twitter with survey measures of attitudes, knowledge, and behaviors related to Zika: probabilistic study in the United States. JMIR Public Health and Surveillance, 4, 1. CrossRef Farhadloo, M., Winneg, K., Chan, M.-P. S., Jamieson, K. H., & Albarracin, D. (2018). Associations of topics of discussion on twitter with survey measures of attitudes, knowledge, and behaviors related to Zika: probabilistic study in the United States. JMIR Public Health and Surveillance, 4, 1. CrossRef
go back to reference Fox, S. (2011). Health topics. Pew Internet and American Life Project. Fox, S. (2011). Health topics. Pew Internet and American Life Project.
go back to reference Fox, S., & Duggan, M. (2013). Health online 2013. Washington, DC: Pew Internet & American Life Project, 1. Fox, S., & Duggan, M. (2013). Health online 2013. Washington, DC: Pew Internet & American Life Project, 1.
go back to reference Haslam, D. M., Tee, A., & Baker, S. (2017). The use of social media as a mechanism of social support in parents. Journal of Child and Family Studies, 26(7), 2026–2037. CrossRef Haslam, D. M., Tee, A., & Baker, S. (2017). The use of social media as a mechanism of social support in parents. Journal of Child and Family Studies, 26(7), 2026–2037. CrossRef
go back to reference Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features European conference on machine learning (pp. 137–142): Springer. Joachims, T. (1998). Text categorization with support vector machines: learning with many relevant features European conference on machine learning (pp. 137–142): Springer.
go back to reference Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Frederic, J., et al. (2016). Jupyter Notebooks-a publishing format for reproducible computational workflows (pp. 87–90). ELPUB Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Frederic, J., et al. (2016). Jupyter Notebooks-a publishing format for reproducible computational workflows (pp. 87–90). ELPUB
go back to reference Laws, R., Walsh, A. D., Hesketh, K. D., Downing, K. L., Kuswara, K., & Campbell, K. J. (2019). Differences between mothers and fathers of young children in their use of the internet to support healthy family lifestyle behaviors: cross-sectional study. Journal of Medical Internet Research, 21(1), e11454. CrossRef Laws, R., Walsh, A. D., Hesketh, K. D., Downing, K. L., Kuswara, K., & Campbell, K. J. (2019). Differences between mothers and fathers of young children in their use of the internet to support healthy family lifestyle behaviors: cross-sectional study. Journal of Medical Internet Research, 21(1), e11454. CrossRef
go back to reference McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text classification AAAI-98 workshop on learning for text categorization. Vol. 752 (pp. 41–48): Citeseer. McCallum, A., & Nigam, K. (1998). A comparison of event models for naive bayes text classification AAAI-98 workshop on learning for text categorization. Vol. 752 (pp. 41–48): Citeseer.
go back to reference Nielsen, D. (2016). Tree Boosting With XGBoost-Why Does XGBoost Win” Every” Machine Learning Competition?: NTNU. Nielsen, D. (2016). Tree Boosting With XGBoost-Why Does XGBoost Win” Every” Machine Learning Competition?: NTNU.
go back to reference Nowak, J., Taspinar, A., & Scherer, R. (2017). LSTM recurrent neural networks for short text and sentiment classification (pp. 553–562). Cham: Springer International Publishing. CrossRef Nowak, J., Taspinar, A., & Scherer, R. (2017). LSTM recurrent neural networks for short text and sentiment classification (pp. 553–562). Cham: Springer International Publishing. CrossRef
go back to reference O’Connor, T. M., Mâsse, L. C., Tu, A. W., Watts, A. W., Hughes, S. O., & Beauchamp, M. R., et al. (2017). Food parenting practices for 5 to 12 year old children: a concept map analysis of parenting and nutrition experts input. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 122. CrossRef O’Connor, T. M., Mâsse, L. C., Tu, A. W., Watts, A. W., Hughes, S. O., & Beauchamp, M. R., et al. (2017). Food parenting practices for 5 to 12 year old children: a concept map analysis of parenting and nutrition experts input. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 122. CrossRef
go back to reference Ramos, J. (2003). Using tf-idf to determine word relevance in document queries. In Proceedings of the First Instructional Conference on Machine Learning. Vol. 242, (pp. 133–142). Ramos, J. (2003). Using tf-idf to determine word relevance in document queries. In Proceedings of the First Instructional Conference on Machine Learning. Vol. 242, (pp. 133–142).
go back to reference Savage, J. S., Fisher, J. O., & Birch, L. L. (2007). Parental influence on eating behavior: conception to adolescence. The Journal of Law, Medicine & Ethics, 35(1), 22–34. CrossRef Savage, J. S., Fisher, J. O., & Birch, L. L. (2007). Parental influence on eating behavior: conception to adolescence. The Journal of Law, Medicine & Ethics, 35(1), 22–34. CrossRef
go back to reference Vaughn, A. E., Ward, D. S., Fisher, J. O., Faith, M. S., Hughes, S. O., & Kremers, S. P., et al. (2015). Fundamental constructs in food parenting practices: a content map to guide future research. Nutrition Reviews, 74(2), 98–117. CrossRef Vaughn, A. E., Ward, D. S., Fisher, J. O., Faith, M. S., Hughes, S. O., & Kremers, S. P., et al. (2015). Fundamental constructs in food parenting practices: a content map to guide future research. Nutrition Reviews, 74(2), 98–117. CrossRef
go back to reference Viera, A.J., & Garrett, J.M. (2005). Understanding interobserver agreement: the kappa statistic. Family Medicine, 37(5), 360–363. Viera, A.J., & Garrett, J.M. (2005). Understanding interobserver agreement: the kappa statistic. Family Medicine, 37(5), 360–363.
Metagegevens
Titel
Using a Machine Learning Methodology to Analyze Reddit Posts regarding Child Feeding Information
Auteurs
Curtis Donelson
Carolyn Sutter
Giang V. Pham
Kanika Narang
Chen Wang
Joseph T. Yun
Publicatiedatum
27-02-2021
Uitgeverij
Springer US
Gepubliceerd in
Journal of Child and Family Studies / Uitgave 5/2021
Print ISSN: 1062-1024
Elektronisch ISSN: 1573-2843
DOI
https://doi.org/10.1007/s10826-021-01923-5