Skip to main content
Top
Gepubliceerd in:

05-09-2015

Using a discrete choice experiment to value the QLU-C10D: feasibility and sensitivity to presentation format

Auteurs: R. Norman, R. Viney, N. K. Aaronson, J. E. Brazier, D. Cella, D. S. J. Costa, P. M. Fayers, G. Kemmler, S. Peacock, A. S. Pickard, D. Rowen, D. J. Street, G. Velikova, T. A. Young, M. T. King

Gepubliceerd in: Quality of Life Research | Uitgave 3/2016

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

To assess the feasibility of using a discrete choice experiment (DCE) to value health states within the QLU-C10D, a utility instrument derived from the QLQ-C30, and to assess clarity, difficulty, and respondent preference between two presentation formats.

Methods

We ran a DCE valuation task in an online panel (N = 430). Respondents answered 16 choice pairs; in half of these, differences between dimensions were highlighted, and in the remainder, common dimensions were described in text and differing attributes were tabulated. To simplify the cognitive task, only four of the QLU-C10D’s ten dimensions differed per choice set. We assessed difficulty and clarity of the valuation task with Likert-type scales, and respondents were asked which format they preferred. We analysed the DCE data by format with a conditional logit model and used Chi-squared tests to compare other responses by format. Semi-structured telephone interviews (N = 8) explored respondents’ cognitive approaches to the valuation task.

Results

Four hundred and forty-nine individuals were recruited, 430 completed at least one choice set, and 422/449 (94 %) completed all 16 choice sets. Interviews revealed that respondents found ten domains difficult but manageable, many adopting simplifying heuristics. Results for clarity and difficulty were identical between formats, but the “highlight” format was preferred by 68 % of respondents. Conditional logit parameter estimates were monotonic within domains, suggesting respondents were able to complete the DCE sensibly, yielding valid results.

Conclusion

A DCE valuation task in which only four of the QLU-C10D’s ten dimensions differed in any choice set is feasible for deriving utility weights for the QLU-C10D.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
go back to reference Bansback, N., Brazier, J., Tsuchiya, A., & Anis, A. (2012). Using a discrete choice experiment to estimate societal health state utility values. Journal of Health Economics, 31, 306–318.CrossRefPubMed Bansback, N., Brazier, J., Tsuchiya, A., & Anis, A. (2012). Using a discrete choice experiment to estimate societal health state utility values. Journal of Health Economics, 31, 306–318.CrossRefPubMed
2.
go back to reference Norman, R., Cronin, P., & Viney, R. (2013). A pilot discrete choice experiment to explore preferences for EQ-5D-5L health states. Applied Health Economics and Health Policy, 11(3), 287–298.CrossRefPubMed Norman, R., Cronin, P., & Viney, R. (2013). A pilot discrete choice experiment to explore preferences for EQ-5D-5L health states. Applied Health Economics and Health Policy, 11(3), 287–298.CrossRefPubMed
3.
go back to reference Norman, R., Viney, R., Brazier, J., Burgess, L., Cronin, P., King, M., et al. (2014). Valuing SF-6D health states using a discrete choice experiment. Medical Decision Making, 34(6), 773–786.CrossRefPubMed Norman, R., Viney, R., Brazier, J., Burgess, L., Cronin, P., King, M., et al. (2014). Valuing SF-6D health states using a discrete choice experiment. Medical Decision Making, 34(6), 773–786.CrossRefPubMed
4.
go back to reference Stolk, E. A., Oppe, M., Scalone, L., & Krabbe, P. F. M. (2010). Discrete choice modeling for the quantification of health states: The case of the EQ-5D. Value in Health, 13(8), 1005–1013.CrossRefPubMed Stolk, E. A., Oppe, M., Scalone, L., & Krabbe, P. F. M. (2010). Discrete choice modeling for the quantification of health states: The case of the EQ-5D. Value in Health, 13(8), 1005–1013.CrossRefPubMed
5.
go back to reference Viney, R., Norman, R., Brazier, J., Cronin, P., King, M. T., Ratcliffe, J., & Street, D. (2014). An Australian discrete choice experiment to value EQ-5D health states. Health Economics, 23(6), 729–742.CrossRefPubMed Viney, R., Norman, R., Brazier, J., Cronin, P., King, M. T., Ratcliffe, J., & Street, D. (2014). An Australian discrete choice experiment to value EQ-5D health states. Health Economics, 23(6), 729–742.CrossRefPubMed
6.
go back to reference Louviere, J., Carson, R. T., Burgess, L., Street, D., & Marley, A. A. (2013). Sequential preference question factors influencing completion rates and response times using an online panel. The Journal of Choice Modelling, 8, 19–31.CrossRef Louviere, J., Carson, R. T., Burgess, L., Street, D., & Marley, A. A. (2013). Sequential preference question factors influencing completion rates and response times using an online panel. The Journal of Choice Modelling, 8, 19–31.CrossRef
7.
go back to reference Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292.CrossRefPubMed Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292.CrossRefPubMed
8.
go back to reference Brazier, J., & Roberts, J. (2004). The estimation of a preference-based measure of health from the SF-12. Medical Care, 42(9), 851–859.CrossRefPubMed Brazier, J., & Roberts, J. (2004). The estimation of a preference-based measure of health from the SF-12. Medical Care, 42(9), 851–859.CrossRefPubMed
9.
go back to reference Rowen, D., Brazier, J., Young, T., Gaugris, S., Craig, B. M., King, M. T., & Velikova, G. (2011). Deriving a preference-based measure for cancer using the EORTC QLQ-C30. Value in Health, 14(5), 721–731.CrossRefPubMed Rowen, D., Brazier, J., Young, T., Gaugris, S., Craig, B. M., King, M. T., & Velikova, G. (2011). Deriving a preference-based measure for cancer using the EORTC QLQ-C30. Value in Health, 14(5), 721–731.CrossRefPubMed
10.
go back to reference King, M. T., Costa, D. S. J., Aaronson, N. K., Brazier, J. E., Cella, D. F., Fayers, P. M., et al. (submitted). QLU-C10D: A health state classification system for a multi-attribute utility measure based on the EORTC QLQ-C30. Quality of Life Research (currently under review). King, M. T., Costa, D. S. J., Aaronson, N. K., Brazier, J. E., Cella, D. F., Fayers, P. M., et al. (submitted). QLU-C10D: A health state classification system for a multi-attribute utility measure based on the EORTC QLQ-C30. Quality of Life Research (currently under review).
11.
go back to reference Ware, J. E., Jr., & Gandek, B. (1998). Overview of the SF-36 health survey and the international quality of life assessment (IQOLA) project. Journal of Clinical Epidemiology, 51(11), 903–912.CrossRefPubMed Ware, J. E., Jr., & Gandek, B. (1998). Overview of the SF-36 health survey and the international quality of life assessment (IQOLA) project. Journal of Clinical Epidemiology, 51(11), 903–912.CrossRefPubMed
12.
go back to reference Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organisation for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.CrossRefPubMed Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organisation for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.CrossRefPubMed
13.
go back to reference Kessler, R. C., Andrews, G., Colpe, L. J., Hiripi, E., Mroczek, D. K., Normand, S. L., et al. (2002). Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychological Medicine, 32(6), 959–976.CrossRefPubMed Kessler, R. C., Andrews, G., Colpe, L. J., Hiripi, E., Mroczek, D. K., Normand, S. L., et al. (2002). Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychological Medicine, 32(6), 959–976.CrossRefPubMed
14.
go back to reference Herdman, M., Gudex, C., Lloyd, A., Janssen, M. F., Kind, P., Parkin, D., et al. (2011). Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research, 20(10), 1727–1736.CrossRefPubMedPubMedCentral Herdman, M., Gudex, C., Lloyd, A., Janssen, M. F., Kind, P., Parkin, D., et al. (2011). Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research, 20(10), 1727–1736.CrossRefPubMedPubMedCentral
15.
go back to reference Colbourn, C. J., & Dinitz, J. H. (2006). Handbook of Combinatorial designs. Boca Raton, FL: Taylor and Francis.CrossRef Colbourn, C. J., & Dinitz, J. H. (2006). Handbook of Combinatorial designs. Boca Raton, FL: Taylor and Francis.CrossRef
16.
go back to reference Street, D. J., & Burgess, L. (2007). The construction of optimal stated choice experiments: Theory and methods. Hoboken, NJ: Wiley.CrossRef Street, D. J., & Burgess, L. (2007). The construction of optimal stated choice experiments: Theory and methods. Hoboken, NJ: Wiley.CrossRef
17.
go back to reference Demirkale, F., Donovan, D., & Street, D. J. (2013). Constructing D-optimal symmetric stated preference discrete choice experiments. Journal of Statistical Planning and Inference, 143, 1380–1391.CrossRef Demirkale, F., Donovan, D., & Street, D. J. (2013). Constructing D-optimal symmetric stated preference discrete choice experiments. Journal of Statistical Planning and Inference, 143, 1380–1391.CrossRef
18.
go back to reference Bleichrodt, H., & Johannesson, M. (1997). The validity of QALYs: An experimental test of constant proportional tradeoff and utility independence. Medical Decision Making, 17(1), 21–32.CrossRefPubMed Bleichrodt, H., & Johannesson, M. (1997). The validity of QALYs: An experimental test of constant proportional tradeoff and utility independence. Medical Decision Making, 17(1), 21–32.CrossRefPubMed
19.
go back to reference Bleichrodt, N., Wakker, P., & Johannesson, M. (1997). Characterizing QALYs by risk neutrality. Journal of Risk and Uncertainty, 15(2), 107–114.CrossRef Bleichrodt, N., Wakker, P., & Johannesson, M. (1997). Characterizing QALYs by risk neutrality. Journal of Risk and Uncertainty, 15(2), 107–114.CrossRef
20.
go back to reference Ritchie, J., & Spencer, L. (1994). Qualitative data analysis for applied policy research. In A. Bryman & R. Burgess (Eds.), Analyzing qualitative data (pp. 173–194). London: Routledge.CrossRef Ritchie, J., & Spencer, L. (1994). Qualitative data analysis for applied policy research. In A. Bryman & R. Burgess (Eds.), Analyzing qualitative data (pp. 173–194). London: Routledge.CrossRef
21.
go back to reference Craig, B. M., Reeve, B. B., Brown, P. M., Cella, D., Hays, R. D., Lipscomb, J., et al. (2014). US valuation of health outcomes measured using the PROMIS-29. Value in Health, 17(8), 846–853.CrossRefPubMedPubMedCentral Craig, B. M., Reeve, B. B., Brown, P. M., Cella, D., Hays, R. D., Lipscomb, J., et al. (2014). US valuation of health outcomes measured using the PROMIS-29. Value in Health, 17(8), 846–853.CrossRefPubMedPubMedCentral
22.
go back to reference Chrzan, K. (2010). Using partial profile choice experiments to handle large numbers of attributes. International Journal of Marketing Research, 52(6), 827–840. Chrzan, K. (2010). Using partial profile choice experiments to handle large numbers of attributes. International Journal of Marketing Research, 52(6), 827–840.
23.
go back to reference Flynn, T. (2010). Using conjoint analysis to estimate health state values for cost-utility analysis: Issues to consider. Pharmacoeconomics, 28(9), 711–722.CrossRefPubMed Flynn, T. (2010). Using conjoint analysis to estimate health state values for cost-utility analysis: Issues to consider. Pharmacoeconomics, 28(9), 711–722.CrossRefPubMed
24.
go back to reference Vass, C., Rigby, D., Campbell, S., Tate, K., Stewart, A., & Payne, K. (2014). PS2-33 investigating the framing of risk attributes in a discrete choice experiment: An application of eye-tracking and think aloud. In Paper presented at the 36th meeting of the Society for Medical Decision Making, Miami, FL. Vass, C., Rigby, D., Campbell, S., Tate, K., Stewart, A., & Payne, K. (2014). PS2-33 investigating the framing of risk attributes in a discrete choice experiment: An application of eye-tracking and think aloud. In Paper presented at the 36th meeting of the Society for Medical Decision Making, Miami, FL.
25.
go back to reference Krucien, N., Ryan, M., & Hermens, F. (2014). Using eye-tracking methods to inform decision making processes in discrete choice experiments, Health Economists’ Study Group (HESG). Glasgow Caledonian University. Krucien, N., Ryan, M., & Hermens, F. (2014). Using eye-tracking methods to inform decision making processes in discrete choice experiments, Health Economists’ Study Group (HESG). Glasgow Caledonian University.
26.
go back to reference Whitty, J. A., Ratcliffe, J., Chen, G., & Scuffham, P. A. (2014). Australian public preferences for the funding of new health technologies: A comparison of discrete choice and profile case best–worst scaling methods. Medical Decision Making, 34(5), 638–654. Whitty, J. A., Ratcliffe, J., Chen, G., & Scuffham, P. A. (2014). Australian public preferences for the funding of new health technologies: A comparison of discrete choice and profile case best–worst scaling methods. Medical Decision Making, 34(5), 638–654.
27.
go back to reference van der Pol, M., Currie, G., Kromm, S., & Ryan, M. (2014). Specification of the utility function in discrete choice experiments. Value in Health, 17(2), 297–301.CrossRefPubMed van der Pol, M., Currie, G., Kromm, S., & Ryan, M. (2014). Specification of the utility function in discrete choice experiments. Value in Health, 17(2), 297–301.CrossRefPubMed
28.
go back to reference Mulhern, B., Bansback, N., Brazier, J., Buckingham, K., Cairns, J., Devlin, N., et al. (2014). Preparatory study for the revaluation of the EQ-5D tariff: Methodology report. Health Technology Assessment, 18(12), vii–xxvi, 1–191. Mulhern, B., Bansback, N., Brazier, J., Buckingham, K., Cairns, J., Devlin, N., et al. (2014). Preparatory study for the revaluation of the EQ-5D tariff: Methodology report. Health Technology Assessment, 18(12), vii–xxvi, 1–191.
29.
go back to reference Bansback, N., Tsuchiya, A., Brazier, J., & Anis, A. (2012). Canadian valuation of EQ-5D health states: Preliminary value set and considerations for future valuation studies. PLoS One, 7(2), e31115.CrossRefPubMedPubMedCentral Bansback, N., Tsuchiya, A., Brazier, J., & Anis, A. (2012). Canadian valuation of EQ-5D health states: Preliminary value set and considerations for future valuation studies. PLoS One, 7(2), e31115.CrossRefPubMedPubMedCentral
Metagegevens
Titel
Using a discrete choice experiment to value the QLU-C10D: feasibility and sensitivity to presentation format
Auteurs
R. Norman
R. Viney
N. K. Aaronson
J. E. Brazier
D. Cella
D. S. J. Costa
P. M. Fayers
G. Kemmler
S. Peacock
A. S. Pickard
D. Rowen
D. J. Street
G. Velikova
T. A. Young
M. T. King
Publicatiedatum
05-09-2015
Uitgeverij
Springer International Publishing
Gepubliceerd in
Quality of Life Research / Uitgave 3/2016
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-015-1115-3