Skip to main content
Top
Gepubliceerd in: Neuropraxis 4/2017

19-06-2017 | Artikel

Transcraniële zwakstroomstimulatie voor het verbeteren van cognitie en stemming: feit of fictie?

Auteur: Dennis J. L. G. Schutter

Gepubliceerd in: Neuropraxis | Uitgave 4/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Samenvatting

Wetenschappelijk onderzoek heeft aangetoond dat zwakke elektrische stromen effecten hebben op hersenen en gedrag. Experimentele studies laten zien dat gelijkstroom, dan wel alternerende stroom, cognitieve prestaties van gezonde mensen kunnen verbeteren. Deze effecten zijn echter klein en de praktische toepasbaarheid is nog beperkt. Klinisch onderzoek heeft uitgewezen dat zwakstroomstimulatie op de frontale hersenkwab een positief effect heeft op stemming bij mensen met een depressieve stoornis. Verder onderzoek naar de precieze werkingsmechanismen is nodig voor het vaststellen van de reikwijdte van deze techniek als het gaat om gedragsbeïnvloeding.
Voetnoten
1
DC-stimulatie heeft het probleem van fosfenen niet, vanwege de constante stroom die wordt toegediend. Op het moment dat DC-stimulatie wordt gestart of wordt afgebroken, kan er wel sprake zijn van het waarnemen van een (zwakke) lichtflits. Dit wordt veroorzaakt door het acute potentiaalverschil en is op te lossen door de intensiteit geleidelijk op te voeren dan wel af te bouwen naar de gewenste stroomsterkte.
 
Literatuur
1.
go back to reference Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114:589–95.CrossRefPubMed Priori A. Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol. 2003;114:589–95.CrossRefPubMed
2.
go back to reference Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633–9.CrossRefPubMedPubMedCentral Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633–9.CrossRefPubMedPubMedCentral
3.
go back to reference Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psychiatry. 2012;3:83.CrossRefPubMedPubMedCentral Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS. Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psychiatry. 2012;3:83.CrossRefPubMedPubMedCentral
4.
go back to reference Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117:1623–9.CrossRefPubMed Miranda PC, Lomarev M, Hallett M. Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 2006;117:1623–9.CrossRefPubMed
5.
go back to reference Rampersad SM, Janssen AM, Lucka F, Aydin Ü, Lanfer B, Lew S, Wolters CH, Stegeman DF, Oostendorp TF. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22:441–52.CrossRefPubMed Rampersad SM, Janssen AM, Lucka F, Aydin Ü, Lanfer B, Lew S, Wolters CH, Stegeman DF, Oostendorp TF. Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng. 2014;22:441–52.CrossRefPubMed
6.
go back to reference Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557:175–90.CrossRefPubMedPubMedCentral Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557:175–90.CrossRefPubMedPubMedCentral
7.
go back to reference Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Conf Proc IEEE Eng Med Biol Soc. 2015;2015:222–5.PubMed Thielscher A, Antunes A, Saturnino GB. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? Conf Proc IEEE Eng Med Biol Soc. 2015;2015:222–5.PubMed
8.
go back to reference Agnew WF, McCreery DB. Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery. 1987;20:143–71.CrossRefPubMed Agnew WF, McCreery DB. Considerations for safety in the use of extracranial stimulation for motor evoked potentials. Neurosurgery. 1987;20:143–71.CrossRefPubMed
9.
go back to reference McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990;37:996–1001.CrossRefPubMed McCreery DB, Agnew WF, Yuen TG, Bullara L. Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng. 1990;37:996–1001.CrossRefPubMed
10.
go back to reference Bikson M, Grossman P, Thomas C et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimulation 2016;9(5):641–61. Bikson M, Grossman P, Thomas C et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimulation 2016;9(5):641–61.
11.
go back to reference Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in human. Clin Neurophysiol. 2003;114:2220–3.CrossRefPubMed Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W. Safety criteria for transcranial direct current stimulation (tDCS) in human. Clin Neurophysiol. 2003;114:2220–3.CrossRefPubMed
12.
go back to reference Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908.CrossRefPubMed Coffman BA, Clark VP, Parasuraman R. Battery powered thought: enhancement of attention, learning, and memory in healthy adults using transcranial direct current stimulation. Neuroimage. 2014;85:895–908.CrossRefPubMed
13.
go back to reference Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: A systematic review and meta – analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9:197–208.CrossRefPubMed Hill AT, Fitzgerald PB, Hoy KE. Effects of anodal transcranial direct current stimulation on working memory: A systematic review and meta – analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 2016;9:197–208.CrossRefPubMed
14.
go back to reference Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Transcranial direct current stimulation improve healthy working memory? A meta-analytic review. J Cogn Neurosci. 2016;28:1063–89.CrossRefPubMed Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Transcranial direct current stimulation improve healthy working memory? A meta-analytic review. J Cogn Neurosci. 2016;28:1063–89.CrossRefPubMed
15.
go back to reference Oldrati V, Schutter DJ. A meta-analysis of studies targeting the human cerebellum with transcranial direct current stimulation to manipulate behavior. In behandeling. Oldrati V, Schutter DJ. A meta-analysis of studies targeting the human cerebellum with transcranial direct current stimulation to manipulate behavior. In behandeling.
16.
go back to reference Schutter DJ. Syncing your brain: electric currents to enhance cognition. Trends Cogn Sci (Regul Ed). 2014;18:331–3.CrossRef Schutter DJ. Syncing your brain: electric currents to enhance cognition. Trends Cogn Sci (Regul Ed). 2014;18:331–3.CrossRef
17.
18.
go back to reference Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18:1839–43.CrossRefPubMed Kanai R, Chaieb L, Antal A, Walsh V, Paulus W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18:1839–43.CrossRefPubMed
19.
go back to reference Schutter DJ, Hortensius R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol. 2010;121:1080–4.CrossRefPubMed Schutter DJ, Hortensius R. Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol. 2010;121:1080–4.CrossRefPubMed
20.
go back to reference Kar K, Krekelberg B. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol. 2012;108:2173–8.CrossRefPubMedPubMedCentral Kar K, Krekelberg B. Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol. 2012;108:2173–8.CrossRefPubMedPubMedCentral
21.
go back to reference Heerebout BT, Tap AE, Rotteveel M, Phaf RH. Gamma flicker elicits positive affect without awareness. Conscious Cogn. 2013;22:281–9.CrossRefPubMed Heerebout BT, Tap AE, Rotteveel M, Phaf RH. Gamma flicker elicits positive affect without awareness. Conscious Cogn. 2013;22:281–9.CrossRefPubMed
22.
go back to reference Williams JH. Frequency-specific effects of flicker on recognition memory. Neuroscience. 2001;104:283–6.CrossRefPubMed Williams JH. Frequency-specific effects of flicker on recognition memory. Neuroscience. 2001;104:283–6.CrossRefPubMed
23.
go back to reference Schutter DJ, Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia. 2016;86:110–8.CrossRefPubMed Schutter DJ, Wischnewski M. A meta-analytic study of exogenous oscillatory electric potentials in neuroenhancement. Neuropsychologia. 2016;86:110–8.CrossRefPubMed
24.
go back to reference Schutter DJ, Sack AT. Current directions in non-invasive low intensity electric brain stimulation for depressive disorder. CNS Neurol Disord Drug Targets. 2014;13:945–52.CrossRefPubMed Schutter DJ, Sack AT. Current directions in non-invasive low intensity electric brain stimulation for depressive disorder. CNS Neurol Disord Drug Targets. 2014;13:945–52.CrossRefPubMed
25.
go back to reference Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data. Br J Psychiatry. 2016;208:522–31.CrossRefPubMedPubMedCentral Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, et al. Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data. Br J Psychiatry. 2016;208:522–31.CrossRefPubMedPubMedCentral
26.
go back to reference Schutter DJ. Transcraniële magnetische stimulatie in de behandeling van depressie. Tijdschr Psychiatr. 2011;53:343–53.PubMed Schutter DJ. Transcraniële magnetische stimulatie in de behandeling van depressie. Tijdschr Psychiatr. 2011;53:343–53.PubMed
27.
go back to reference Brem AK, Fried PJ, Horvath JC, Robertson EM, Pascual-Leone A. Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? Neuroimage. 2014;85:1058–68.CrossRefPubMed Brem AK, Fried PJ, Horvath JC, Robertson EM, Pascual-Leone A. Is neuroenhancement by noninvasive brain stimulation a net zero-sum proposition? Neuroimage. 2014;85:1058–68.CrossRefPubMed
28.
go back to reference Wischnewski M, Zerr P, Schutter DJ. Effects of theta transcranial alternating current stimulation over the frontal cortex on reversal learning. Brain Stimul. 2016;9:705–11.CrossRefPubMed Wischnewski M, Zerr P, Schutter DJ. Effects of theta transcranial alternating current stimulation over the frontal cortex on reversal learning. Brain Stimul. 2016;9:705–11.CrossRefPubMed
29.
go back to reference Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.PubMed Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci. 1982;2:32–48.PubMed
30.
go back to reference Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation modulates LTP and LTD: Activity dependence and dendritic effects. Brain Stimul. 2017;10:51–8.CrossRefPubMed Kronberg G, Bridi M, Abel T, Bikson M, Parra LC. Direct current stimulation modulates LTP and LTD: Activity dependence and dendritic effects. Brain Stimul. 2017;10:51–8.CrossRefPubMed
31.
go back to reference Wischnewski M, Schutter DJ. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 2015;8:685–92.CrossRefPubMed Wischnewski M, Schutter DJ. Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 2015;8:685–92.CrossRefPubMed
32.
go back to reference Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8:499–508.CrossRefPubMedPubMedCentral Vossen A, Gross J, Thut G. Alpha power increase after transcranial alternating current stimulation at alpha frequency (α-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 2015;8:499–508.CrossRefPubMedPubMedCentral
Metagegevens
Titel
Transcraniële zwakstroomstimulatie voor het verbeteren van cognitie en stemming: feit of fictie?
Auteur
Dennis J. L. G. Schutter
Publicatiedatum
19-06-2017
Uitgeverij
Bohn Stafleu van Loghum
Gepubliceerd in
Neuropraxis / Uitgave 4/2017
Print ISSN: 1387-5817
Elektronisch ISSN: 1876-5785
DOI
https://doi.org/10.1007/s12474-017-0157-4

Andere artikelen Uitgave 4/2017

Neuropraxis 4/2017 Naar de uitgave

EditorialNotes

Woorden vooraf