Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2009

01-07-2009 | Original Article

Tool use and the distalization of the end-effector

Auteurs: Michael A. Arbib, James B. Bonaiuto, Stéphane Jacobs, Scott H. Frey

Gepubliceerd in: Psychological Research | Uitgave 4/2009

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

We review recent neurophysiological data from macaques and humans suggesting that the use of tools extends the internal representation of the actor’s hand, and relate it to our modeling of the visual control of grasping. We introduce the idea that, in addition to extending the body schema to incorporate the tool, tool use involves distalization of the end-effector from hand to tool. Different tools extend the body schema in different ways, with a displaced visual target and a novel, task-specific processing of haptic feedback to the hand. This distalization is critical in order to exploit the unique functional capacities engendered by complex tools.
Voetnoten
1
In the study of imitation (Dautenhahn & Nehaniv, 2002), the correspondence problem for the imitator is to decide how to match end-effectors of the imitatee’s body to its own. We have brains and bodies that allow us to master the use of varied tools, but that rests, for most of us, on early training from caregivers that enables us to learn how to attend to a range of necessary affordances and master a set of basic uses of our hands and body, providing the effectivities which are dual to the affordances provided by perception (Turvey, 1992; Turvey et al., 1981; Zukow-Goldring & Arbib, 2007) This allows us to “get the idea” of novel tools by a mix of verbal instruction, complex imitation, mechanical reasoning (Goldenberg & Hagmann, 1998), and trial-and-error—the latter being crucial as we hone skill in using a tool through extended practice with it.
 
2
Unfortunately, the data do not support ready discrimination between F4 and F5 cells.
 
3
Note that even in grasping, the hand can be reconfigured to provide different end-effectors, e.g., the pads of thumb and index finger in a precision pinch, the palm and inner finger surfaces in a power grasp. So the hypothesis that F5 neurons encode the motion of the end-effector in extrinsic coordinates is still consistent with these new data and previous research in F5 (Rizzolatti et al., 1988; Raos et al., 2006; Umilta et al., 2007) that relate neuron activity to grasp type and phase and wrist orientation.
 
4
An informal description of ACQ was published in Arbib and Bonaiuto (2008), an extended description of the model with further simulation results will appear in Bonaiuto and Arbib (2009).
 
Literatuur
go back to reference Alexander, G. E., & Crutcher, M. D. (1990). Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology, 64, 164–178.PubMed Alexander, G. E., & Crutcher, M. D. (1990). Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology, 64, 164–178.PubMed
go back to reference Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (Ed.), Handbook of physiology—the nervous system II. motor control (pp. 1449–1480). American Physiological Society. Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (Ed.), Handbook of physiology—the nervous system II. motor control (pp. 1449–1480). American Physiological Society.
go back to reference Arbib, M. A., & Bonaiuto, J. B. (2008). From grasping to complex imitation: modeling mirror systems on the evolutionary path to language. Mind & Society, 7, 43–64.CrossRef Arbib, M. A., & Bonaiuto, J. B. (2008). From grasping to complex imitation: modeling mirror systems on the evolutionary path to language. Mind & Society, 7, 43–64.CrossRef
go back to reference Arbib, M. A., Iberall, T., & Lyons, D. (1985). Coordinated control programs for control of the hands. In: A. W. Goodwin, & I. Darian-Smith (Eds.), Hand function and the neocortex (pp. 111–129). Berlin: Springer. Arbib, M. A., Iberall, T., & Lyons, D. (1985). Coordinated control programs for control of the hands. In: A. W. Goodwin, & I. Darian-Smith (Eds.), Hand function and the neocortex (pp. 111–129). Berlin: Springer.
go back to reference Arbib, M. A., Schweighofer, N., & Thach, W. T. (1995). Modeling the cerebellum: from adaptation to coordination. In D. J. Glencross & J. P. Piek (Eds.) Motor Control and Sensory-Motor Integration: Issues and Directions (pp. 11–36). North Holland: Elsevier. Arbib, M. A., Schweighofer, N., & Thach, W. T. (1995). Modeling the cerebellum: from adaptation to coordination. In D. J. Glencross & J. P. Piek (Eds.) Motor Control and Sensory-Motor Integration: Issues and Directions (pp. 11–36). North Holland: Elsevier.
go back to reference Asanuma, H., & Arissian, K. (1984). Experiments on functional role of peripheral input to motor cortex during voluntary movements in the monkey. Journal of Neurophysiology, 52(2), 212–227.PubMed Asanuma, H., & Arissian, K. (1984). Experiments on functional role of peripheral input to motor cortex during voluntary movements in the monkey. Journal of Neurophysiology, 52(2), 212–227.PubMed
go back to reference Berthier, N. E., & Keen, R. (2006). Development of reaching in infancy. Experimental Brain Research, 169(4), 507–518.CrossRef Berthier, N. E., & Keen, R. (2006). Development of reaching in infancy. Experimental Brain Research, 169(4), 507–518.CrossRef
go back to reference Berthier, N. E., Clifton, R. K., Gullapalli, V., McCall, D. D., & Robin, D. J. (1996). Visual information and object size in the control of reaching. Journal of Motor Behavior, 28(3), 187–197.PubMed Berthier, N. E., Clifton, R. K., Gullapalli, V., McCall, D. D., & Robin, D. J. (1996). Visual information and object size in the control of reaching. Journal of Motor Behavior, 28(3), 187–197.PubMed
go back to reference Berthier, N. E., Clifton, R. K., McCall, D. D., & Robin, D. J. (1999). Proximodistal structure of early reaching in human infants. Experimental Brain Research, 127(3), 259–269.CrossRef Berthier, N. E., Clifton, R. K., McCall, D. D., & Robin, D. J. (1999). Proximodistal structure of early reaching in human infants. Experimental Brain Research, 127(3), 259–269.CrossRef
go back to reference Berti, A., & Frassinetti, F. (2000). When far becomes near: remapping of space by tool use. Journal of Cognitive Neurosciences, 12(3), 415–420.CrossRef Berti, A., & Frassinetti, F. (2000). When far becomes near: remapping of space by tool use. Journal of Cognitive Neurosciences, 12(3), 415–420.CrossRef
go back to reference Binkofski, F., Buccino, G., Dohle, C., Seitz, R. J., & Freund, H. J. (1999). Mirror agnosia and mirror ataxia constitute different parietal lobe disorders. Annals of Neurology, 46(1), 51–61.PubMedCrossRef Binkofski, F., Buccino, G., Dohle, C., Seitz, R. J., & Freund, H. J. (1999). Mirror agnosia and mirror ataxia constitute different parietal lobe disorders. Annals of Neurology, 46(1), 51–61.PubMedCrossRef
go back to reference Bonaiuto, J. B., & Arbib, M. A. (2009). What did i just do? A new role for mirror neurons (submitted). Bonaiuto, J. B., & Arbib, M. A. (2009). What did i just do? A new role for mirror neurons (submitted).
go back to reference Bonaiuto, J. B., Rosta, E., & Arbib, M. A. (2007). Extending the mirror neuron system model. I : Audible actions and invisible grasps. Biological Cybernetics, 96, 9–38.PubMedCrossRef Bonaiuto, J. B., Rosta, E., & Arbib, M. A. (2007). Extending the mirror neuron system model. I : Audible actions and invisible grasps. Biological Cybernetics, 96, 9–38.PubMedCrossRef
go back to reference Caminiti, R., Johnson, P. B., Galli, C., Ferraina, S., & Burnod, Y. (1991). Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. Journal of Neuroscience, 11(5), 1182–1197.PubMed Caminiti, R., Johnson, P. B., Galli, C., Ferraina, S., & Burnod, Y. (1991). Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. Journal of Neuroscience, 11(5), 1182–1197.PubMed
go back to reference Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814.PubMedCrossRef Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron, 45(5), 801–814.PubMedCrossRef
go back to reference Clifton, R. K., Muir, D. W., Ashmead, D. H., & Clarkson, M. G. (1993). Is visually guided reaching in early infancy a myth? Child Development, 64(4), 1099–1110.PubMedCrossRef Clifton, R. K., Muir, D. W., Ashmead, D. H., & Clarkson, M. G. (1993). Is visually guided reaching in early infancy a myth? Child Development, 64(4), 1099–1110.PubMedCrossRef
go back to reference Craik, K. J. W. (1943). The nature of explanation. Cambridge: Cambridge University Press. Craik, K. J. W. (1943). The nature of explanation. Cambridge: Cambridge University Press.
go back to reference Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71(3), 1281–1284.PubMed Crammond, D. J., & Kalaska, J. F. (1994). Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. Journal of Neurophysiology, 71(3), 1281–1284.PubMed
go back to reference Crammond, D. J., & Kalaska, J. F. (2000). Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. Journal of Neurophysiology, 84(2), 986–1005.PubMed Crammond, D. J., & Kalaska, J. F. (2000). Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. Journal of Neurophysiology, 84(2), 986–1005.PubMed
go back to reference Crutcher, M. D., & Alexander, G. E. (1990). Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology, 64, 151–163.PubMed Crutcher, M. D., & Alexander, G. E. (1990). Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology, 64, 151–163.PubMed
go back to reference Dautenhahn, K., & Nehaniv, C. (Eds.). (2002). Imitation in animals and artifacts. Cambridge, MA: The MIT Press. Dautenhahn, K., & Nehaniv, C. (Eds.). (2002). Imitation in animals and artifacts. Cambridge, MA: The MIT Press.
go back to reference Dum, R. P., & Strick, P. L. (2005). Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. Journal of Neuroscience, 25(6), 1375–1386.PubMedCrossRef Dum, R. P., & Strick, P. L. (2005). Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. Journal of Neuroscience, 25(6), 1375–1386.PubMedCrossRef
go back to reference Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision- versus power-grip tasks: an fMRI study. Journal of Neurophysiology, 83(1), 528–536.PubMed Ehrsson, H. H., Fagergren, A., Jonsson, T., Westling, G., Johansson, R. S., & Forssberg, H. (2000). Cortical activity in precision- versus power-grip tasks: an fMRI study. Journal of Neurophysiology, 83(1), 528–536.PubMed
go back to reference Evarts, E. V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14–27.PubMed Evarts, E. V. (1968). Relation of pyramidal tract activity to force exerted during voluntary movement. Journal of Neurophysiology, 31, 14–27.PubMed
go back to reference Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Networks, 11(7–8), 1277–1303.PubMedCrossRef Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Networks, 11(7–8), 1277–1303.PubMedCrossRef
go back to reference Farnè, A., Iriki, A., & Ladavas, E. (2005). Shaping multisensory action-space with tools: evidence from patients with cross-modal extinction. Neuropsychologia, 43(2), 238–248.PubMedCrossRef Farnè, A., Iriki, A., & Ladavas, E. (2005). Shaping multisensory action-space with tools: evidence from patients with cross-modal extinction. Neuropsychologia, 43(2), 238–248.PubMedCrossRef
go back to reference Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neurosciences, 17(2), 212–226.CrossRef Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neurosciences, 17(2), 212–226.CrossRef
go back to reference Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308(5722), 662–667.PubMedCrossRef Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308(5722), 662–667.PubMedCrossRef
go back to reference Frey, S. H. (2007). What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex, 43(3), 368–375.PubMedCrossRef Frey, S. H. (2007). What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex, 43(3), 368–375.PubMedCrossRef
go back to reference Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain Research: Cognitive Brain Research, 23(2–3), 397–405.PubMedCrossRef Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain Research: Cognitive Brain Research, 23(2–3), 397–405.PubMedCrossRef
go back to reference Gentilucci, M., Roy, A. C., & Stefanini, S. (2004). Grasping an object naturally or with a tool: are these tasks guided by a common motor representation? Experimental Brain Research, 157(4), 496–506.CrossRef Gentilucci, M., Roy, A. C., & Stefanini, S. (2004). Grasping an object naturally or with a tool: are these tasks guided by a common motor representation? Experimental Brain Research, 157(4), 496–506.CrossRef
go back to reference Goldenberg, G., & Hagmann, S. (1998). Tool use and mechanical problem solving in apraxia. Neuropsychologia, 36(7), 581–589.PubMedCrossRef Goldenberg, G., & Hagmann, S. (1998). Tool use and mechanical problem solving in apraxia. Neuropsychologia, 36(7), 581–589.PubMedCrossRef
go back to reference Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103–111.CrossRef Grafton, S. T., Arbib, M. A., Fadiga, L., & Rizzolatti, G. (1996). Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Experimental Brain Research, 112, 103–111.CrossRef
go back to reference Han, C. E., Arbib, & Schweighofer, N. (2008). Stroke rehabilitation reaches a threshold. PLoS Computational Biology, 4(8), e1000133. Han, C. E., Arbib, & Schweighofer, N. (2008). Stroke rehabilitation reaches a threshold. PLoS Computational Biology, 4(8), e1000133.
go back to reference Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.CrossRef Head, H., & Holmes, G. (1911). Sensory disturbances from cerebral lesions. Brain, 34, 102–254.CrossRef
go back to reference Hepp-Reymond, M. C., Husler, E. J., Maier, M. A., & Ql, H. X. (1994). Force-related neuronal activity in two regions of the primate ventral premotor cortex. Canadian Journal of Physiology and Pharmacology, 72(5), 571–579.PubMed Hepp-Reymond, M. C., Husler, E. J., Maier, M. A., & Ql, H. X. (1994). Force-related neuronal activity in two regions of the primate ventral premotor cortex. Canadian Journal of Physiology and Pharmacology, 72(5), 571–579.PubMed
go back to reference Hoff, B., & Arbib, M. A. (1993). Models of trajectory formation and temporal interaction of reach and grasp. Journal of Motor Behavior, 25(3), 175–192.PubMed Hoff, B., & Arbib, M. A. (1993). Models of trajectory formation and temporal interaction of reach and grasp. Journal of Motor Behavior, 25(3), 175–192.PubMed
go back to reference Holmes, N. P., Calvert, G. A., & Spence, C. (2004). Extending or projecting peripersonal space with tools? Multisensory interactions highlight only the distal and proximal ends of tools. Neuroscience Letters, 372(1–2), 62–67.PubMedCrossRef Holmes, N. P., Calvert, G. A., & Spence, C. (2004). Extending or projecting peripersonal space with tools? Multisensory interactions highlight only the distal and proximal ends of tools. Neuroscience Letters, 372(1–2), 62–67.PubMedCrossRef
go back to reference Iberall, T., & Arbib, M. A. (1990). Schemas for the control of hand movements: an essay on cortical localization. In M. A. Goodale (Ed.), Vision and action: the control of grasping (pp. 204–242). Ablex Publishing Corporation. Iberall, T., & Arbib, M. A. (1990). Schemas for the control of hand movements: an essay on cortical localization. In M. A. Goodale (Ed.), Vision and action: the control of grasping (pp. 204–242). Ablex Publishing Corporation.
go back to reference Iberall, T., Bingham, G., & Arbib, M. A. (1986). Opposition space as a structuring concept for the analysis of skilled hand movements. In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns (pp. 158–173). Berlin: Springer. Iberall, T., Bingham, G., & Arbib, M. A. (1986). Opposition space as a structuring concept for the analysis of skilled hand movements. In H. Heuer & C. Fromm (Eds.), Generation and modulation of action patterns (pp. 158–173). Berlin: Springer.
go back to reference Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43(3), 338–349.PubMedCrossRef Imamizu, H., Higuchi, S., Toda, A., & Kawato, M. (2007). Reorganization of brain activity for multiple internal models after short but intensive training. Cortex, 43(3), 338–349.PubMedCrossRef
go back to reference Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport, 7, 2325–2330.PubMedCrossRef Iriki, A., Tanaka, M., & Iwamura, Y. (1996). Coding of modified body schema during tool use by macaque postcentral neurones. NeuroReport, 7, 2325–2330.PubMedCrossRef
go back to reference Jacobs, S., Danielmeier, C., & Frey, S. H. (2009). Human anterior intra-parietal and ventral premotor cortices support effector-specific representations of grasping with the hand or a novel tool (submitted). Jacobs, S., Danielmeier, C., & Frey, S. H. (2009). Human anterior intra-parietal and ventral premotor cortices support effector-specific representations of grasping with the hand or a novel tool (submitted).
go back to reference Jeannerod, M., & Biguer, B. (1982). Visuomotor mechanisms in reaching within extra-personal space. In D. J. Ingle, R. J. W. Mansfield, & M. A. Goodale (Eds.), Advances in the analysis of visual behavior (pp. 387–409). Cambridge, MA: The MIT Press. Jeannerod, M., & Biguer, B. (1982). Visuomotor mechanisms in reaching within extra-personal space. In D. J. Ingle, R. J. W. Mansfield, & M. A. Goodale (Eds.), Advances in the analysis of visual behavior (pp. 387–409). Cambridge, MA: The MIT Press.
go back to reference Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18(7), 314–320.PubMedCrossRef Jeannerod, M., Arbib, M. A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18(7), 314–320.PubMedCrossRef
go back to reference Johnson, S. H. (2000). Thinking ahead: the case for motor imagery in prospective judgements of prehension. Cognition, 74(1), 33–70.PubMedCrossRef Johnson, S. H. (2000). Thinking ahead: the case for motor imagery in prospective judgements of prehension. Cognition, 74(1), 33–70.PubMedCrossRef
go back to reference Johnson, S. H., & Grafton, S. T. (2003). From ‘acting on’ to ‘acting with’: the functional anatomy of object-oriented action schemata. Progress in Brain Research, 142, 127–139.PubMedCrossRef Johnson, S. H., & Grafton, S. T. (2003). From ‘acting on’ to ‘acting with’: the functional anatomy of object-oriented action schemata. Progress in Brain Research, 142, 127–139.PubMedCrossRef
go back to reference Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S., & Heinze, H. J. (2002). Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage, 17(4), 1693–1704.PubMedCrossRef Johnson, S. H., Rotte, M., Grafton, S. T., Hinrichs, H., Gazzaniga, M. S., & Heinze, H. J. (2002). Selective activation of a parietofrontal circuit during implicitly imagined prehension. Neuroimage, 17(4), 1693–1704.PubMedCrossRef
go back to reference Johnson-Frey, S. H. (2003). Cortical mechanisms of human tool use. In S. H. Johnson-Frey (Ed.), Taking action: cognitive neuroscience perspectives on the problem of intentional acts (pp. 185–217). Cambridge, MA: The MIT Press. Johnson-Frey, S. H. (2003). Cortical mechanisms of human tool use. In S. H. Johnson-Frey (Ed.), Taking action: cognitive neuroscience perspectives on the problem of intentional acts (pp. 185–217). Cambridge, MA: The MIT Press.
go back to reference Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78.PubMedCrossRef Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 71–78.PubMedCrossRef
go back to reference Jordan, M. I., & Rumelhart, D. (1992). Forward models: supervised learning with a distal teacher. Cognitive Science, 16, 307–354.CrossRef Jordan, M. I., & Rumelhart, D. (1992). Forward models: supervised learning with a distal teacher. Cognitive Science, 16, 307–354.CrossRef
go back to reference Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 4(10), 1020–1025.PubMedCrossRef Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 4(10), 1020–1025.PubMedCrossRef
go back to reference Kakei, S., Hoffman, D. S., & Strick, P. L. (2003). Sensorimotor transformations in cortical motor areas. Neuroscience Research, 46(1), 1–10.PubMedCrossRef Kakei, S., Hoffman, D. S., & Strick, P. L. (2003). Sensorimotor transformations in cortical motor areas. Neuroscience Research, 46(1), 1–10.PubMedCrossRef
go back to reference Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science, 297, 846–848.PubMedCrossRef Kohler, E., Keysers, C., Umiltà, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: action representation in mirror neurons. Science, 297, 846–848.PubMedCrossRef
go back to reference Króliczak, G., & Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex (in press). Króliczak, G., & Frey, S. H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex (in press).
go back to reference Kurata, K. (1993). Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. Journal of Neurophysiology, 69, 187–200.PubMed Kurata, K. (1993). Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. Journal of Neurophysiology, 69, 187–200.PubMed
go back to reference Kurata, K., & Hoshi, E. (2002). Movement-related neuronal activity reflecting the transformation of coordinates in the ventral premotor cortex of monkeys. Journal of Neurophysiology, 88(6), 3118–3132.PubMedCrossRef Kurata, K., & Hoshi, E. (2002). Movement-related neuronal activity reflecting the transformation of coordinates in the ventral premotor cortex of monkeys. Journal of Neurophysiology, 88(6), 3118–3132.PubMedCrossRef
go back to reference Luppino, G., Murata, A., Govoni, P., & Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Experimental Brain Research, 128(1–2), 181–187.CrossRef Luppino, G., Murata, A., Govoni, P., & Matelli, M. (1999). Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Experimental Brain Research, 128(1–2), 181–187.CrossRef
go back to reference Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438.PubMedCrossRef Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438.PubMedCrossRef
go back to reference Maier, M. A., Bennett, K. M., Hepp-Reymond, M. C., & Lemon, R. N. (1993). Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. Journal of Neurophysiology, 69(3), 772–785.PubMed Maier, M. A., Bennett, K. M., Hepp-Reymond, M. C., & Lemon, R. N. (1993). Contribution of the monkey corticomotoneuronal system to the control of force in precision grip. Journal of Neurophysiology, 69(3), 772–785.PubMed
go back to reference Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2), 79–86.PubMedCrossRef Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2), 79–86.PubMedCrossRef
go back to reference Maravita, A., Spence, C., Kennett, S., & Driver, J. (2002). Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition, 83(2), B25–B34.PubMedCrossRef Maravita, A., Spence, C., Kennett, S., & Driver, J. (2002). Tool-use changes multimodal spatial interactions between vision and touch in normal humans. Cognition, 83(2), B25–B34.PubMedCrossRef
go back to reference Marconi, B., Genovesio, A., Battaglia-Mayer, A., Ferraina, S., Squatrito, S., & Molinari, M., et al. (2001). Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cerebral Cortex, 11(6), 513–527.PubMedCrossRef Marconi, B., Genovesio, A., Battaglia-Mayer, A., Ferraina, S., Squatrito, S., & Molinari, M., et al. (2001). Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cerebral Cortex, 11(6), 513–527.PubMedCrossRef
go back to reference Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996a). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119(Pt 4), 1183–1198.PubMedCrossRef Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996a). Throwing while looking through prisms. I. Focal olivocerebellar lesions impair adaptation. Brain, 119(Pt 4), 1183–1198.PubMedCrossRef
go back to reference Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996b). Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain, 119(Pt 4), 1199–1211.PubMedCrossRef Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996b). Throwing while looking through prisms. II. Specificity and storage of multiple gaze-throw calibrations. Brain, 119(Pt 4), 1199–1211.PubMedCrossRef
go back to reference Matelli, M., & Luppino, G. (2001). Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage, 14, S27–S32.PubMedCrossRef Matelli, M., & Luppino, G. (2001). Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage, 14, S27–S32.PubMedCrossRef
go back to reference Ochiai, T., Mushiake, H., & Tanji, J. (2005). Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. Cerebral Cortex, 15(7), 929–937.PubMedCrossRef Ochiai, T., Mushiake, H., & Tanji, J. (2005). Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. Cerebral Cortex, 15(7), 929–937.PubMedCrossRef
go back to reference Oztop, E., Arbib, M. A., & Bradley, N. (2006). The development of grasping and the Mirror System. In M. A. Arbib (Ed.), Action to language via the mirror neuron system (pp. 397–423). Cambridge: Cambridge University Press. Oztop, E., Arbib, M. A., & Bradley, N. (2006). The development of grasping and the Mirror System. In M. A. Arbib (Ed.), Action to language via the mirror neuron system (pp. 397–423). Cambridge: Cambridge University Press.
go back to reference Oztop, E., Bradley, N. S., & Arbib, M. A. (2004). Infant grasp learning: a computational model. Experimental Brain Research, 158(4), 480–503.CrossRef Oztop, E., Bradley, N. S., & Arbib, M. A. (2004). Infant grasp learning: a computational model. Experimental Brain Research, 158(4), 480–503.CrossRef
go back to reference Oztop, E., Imamizu, H., Cheng, G., & Kawato, M. (2007). A computational model of anterior intraparietal (AIP) neurons. Neurocomputing, 69, 1354–1361 Oztop, E., Imamizu, H., Cheng, G., & Kawato, M. (2007). A computational model of anterior intraparietal (AIP) neurons. Neurocomputing, 69, 1354–1361
go back to reference Picard, N., & Strick, P. L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11, 663–672.PubMedCrossRef Picard, N., & Strick, P. L. (2001). Imaging the premotor areas. Current Opinion in Neurobiology, 11, 663–672.PubMedCrossRef
go back to reference Pouget, A., Deneve, S., Ducom, J. C., & Latham, P. E. (1999). Narrow versus wide tuning curves: what’s best for a population code? Neural Computation, 11(1), 85–90.PubMedCrossRef Pouget, A., Deneve, S., Ducom, J. C., & Latham, P. E. (1999). Narrow versus wide tuning curves: what’s best for a population code? Neural Computation, 11(1), 85–90.PubMedCrossRef
go back to reference Raos, V., Umiltà, M. A., Gallese, V., & Fogassi, L. (2004). Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. Journal of Neurophysiology, 92(4), 1990–2002.PubMedCrossRef Raos, V., Umiltà, M. A., Gallese, V., & Fogassi, L. (2004). Functional properties of grasping-related neurons in the dorsal premotor area F2 of the macaque monkey. Journal of Neurophysiology, 92(4), 1990–2002.PubMedCrossRef
go back to reference Raos, V., Umiltà, M. A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95(2), 709–729.PubMedCrossRef Raos, V., Umiltà, M. A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95(2), 709–729.PubMedCrossRef
go back to reference Riehle, A., & Requin, J. (1989). Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. Journal of Neurophysiology, 61(3), 534–549.PubMed Riehle, A., & Requin, J. (1989). Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. Journal of Neurophysiology, 61(3), 534–549.PubMed
go back to reference Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491–507.CrossRef Rizzolatti, G., Camarda, R., Fogassi, L., Gentilucci, M., Luppino, G., & Matelli, M. (1988). Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research, 71, 491–507.CrossRef
go back to reference Rolls, E. T. (2004). Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. The Anatomical Record: Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 281(1), 1212–1225. Rolls, E. T. (2004). Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion. The Anatomical Record: Part A, Discoveries in Molecular, Cellular, and Evolutionary Biology, 281(1), 1212–1225.
go back to reference Sakamoto, T., Arissian, K., & Asanuma, H. (1989). Functional role of the sensory cortex in learning motor skills in cats. Brain Research, 503(2), 258–264.PubMedCrossRef Sakamoto, T., Arissian, K., & Asanuma, H. (1989). Functional role of the sensory cortex in learning motor skills in cats. Brain Research, 503(2), 258–264.PubMedCrossRef
go back to reference Schluter, N. D., Krams, M., Rushworth, M. F., & Passingham, R. E. (2001). Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia, 39(2), 105–113.PubMedCrossRef Schluter, N. D., Krams, M., Rushworth, M. F., & Passingham, R. E. (2001). Cerebral dominance for action in the human brain: the selection of actions. Neuropsychologia, 39(2), 105–113.PubMedCrossRef
go back to reference Schluter, N. D., Rushworth, M. F., Passingham, R. E., & Mills, K. R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: a study using transcranial magnetic stimulation. Brain, 121(Pt 5), 785–799.PubMedCrossRef Schluter, N. D., Rushworth, M. F., Passingham, R. E., & Mills, K. R. (1998). Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements: a study using transcranial magnetic stimulation. Brain, 121(Pt 5), 785–799.PubMedCrossRef
go back to reference Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. 1. Relations between single cell discharge and direction of movement. Journal of Neuroscience, 8, 2913–2927.PubMed Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. 1. Relations between single cell discharge and direction of movement. Journal of Neuroscience, 8, 2913–2927.PubMed
go back to reference Spoelstra, J., & Arbib, M. A. (2001). Cerebellar microcomplexes and the modulation of motor pattern generators. Autonomous Robots, 11, 273–278.CrossRef Spoelstra, J., & Arbib, M. A. (2001). Cerebellar microcomplexes and the modulation of motor pattern generators. Autonomous Robots, 11, 273–278.CrossRef
go back to reference Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge, MA: The MIT Press. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge, MA: The MIT Press.
go back to reference Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Reviews: Neuroscience, 3, 228–236.PubMedCrossRef Taub, E., Uswatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Reviews: Neuroscience, 3, 228–236.PubMedCrossRef
go back to reference Tunik, E., Frey, S. H., & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8(4), 505–511.PubMed Tunik, E., Frey, S. H., & Grafton, S. T. (2005). Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8(4), 505–511.PubMed
go back to reference Turvey, M. (1992). Affordances and prospective control: an outline of the ontology. Ecological Psychology, 4, 173–187.CrossRef Turvey, M. (1992). Affordances and prospective control: an outline of the ontology. Ecological Psychology, 4, 173–187.CrossRef
go back to reference Turvey, M., Shaw, R., Reed, E., & Mace, W. (1981). Ecological laws of perceiving and acting. Cognition, 9, 237–304.PubMedCrossRef Turvey, M., Shaw, R., Reed, E., & Mace, W. (1981). Ecological laws of perceiving and acting. Cognition, 9, 237–304.PubMedCrossRef
go back to reference Umilta, M. A., Brochier, T., Spinks, R. L., & Lemon, R. N. (2007). Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. Journal of Neurophysiology, 98(1), 488–501.PubMedCrossRef Umilta, M. A., Brochier, T., Spinks, R. L., & Lemon, R. N. (2007). Simultaneous recording of macaque premotor and primary motor cortex neuronal populations reveals different functional contributions to visuomotor grasp. Journal of Neurophysiology, 98(1), 488–501.PubMedCrossRef
go back to reference Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., & Caruana, F., et al. (2008). When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2209–2213.PubMedCrossRef Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., & Caruana, F., et al. (2008). When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2209–2213.PubMedCrossRef
go back to reference Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., & Keysers, C., et al. (2001). I know what you are doing: a neurophysiological study. Neuron, 31, 155–165.PubMedCrossRef Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., & Keysers, C., et al. (2001). I know what you are doing: a neurophysiological study. Neuron, 31, 155–165.PubMedCrossRef
go back to reference von Hofsten, C. (2004). An action perspective on motor development. Trends in Cognitive Sciences, 8(6), 266–272.CrossRef von Hofsten, C. (2004). An action perspective on motor development. Trends in Cognitive Sciences, 8(6), 266–272.CrossRef
go back to reference von Hofsten, C., & Ronnqvist, L. (1993). The Structuring of neonatal arm movements. Child Development, 64, 1046–1057.CrossRef von Hofsten, C., & Ronnqvist, L. (1993). The Structuring of neonatal arm movements. Child Development, 64, 1046–1057.CrossRef
go back to reference Weinrich, M., & Wise, S. P. (1982). The premotor cortex of the monkey. Journal of Neuroscience, 2(9), 1329–1345.PubMed Weinrich, M., & Wise, S. P. (1982). The premotor cortex of the monkey. Journal of Neuroscience, 2(9), 1329–1345.PubMed
go back to reference Wing, A. M. (2000). Motor control: mechanisms of motor equivalence in handwriting. Current Biology, 10(6), R245–248.PubMedCrossRef Wing, A. M. (2000). Motor control: mechanisms of motor equivalence in handwriting. Current Biology, 10(6), R245–248.PubMedCrossRef
go back to reference Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.PubMedCrossRef Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11(7–8), 1317–1329.PubMedCrossRef
go back to reference Zukow-Goldring, P., & Arbib, M. A. (2007). Affordances, effectivities, and assisted imitation: caregivers and the directing of attention. Neurocomputing, 70, 2181–2193.CrossRef Zukow-Goldring, P., & Arbib, M. A. (2007). Affordances, effectivities, and assisted imitation: caregivers and the directing of attention. Neurocomputing, 70, 2181–2193.CrossRef
Metagegevens
Titel
Tool use and the distalization of the end-effector
Auteurs
Michael A. Arbib
James B. Bonaiuto
Stéphane Jacobs
Scott H. Frey
Publicatiedatum
01-07-2009
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 4/2009
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-009-0242-2

Andere artikelen Uitgave 4/2009

Psychological Research 4/2009 Naar de uitgave