Skip to main content
Top
Gepubliceerd in: Journal of Foot and Ankle Research 1/2012

Open Access 01-12-2012 | Oral presentation

Three-dimensional ankle kinematics in children’s school shoes during running

Auteurs: Caleb Wegener, Damien O’Meara, Adrienne E Hunt, Joshua Burns, Benedicte Vanwanseele, Andrew Greene, Richard M Smith

Gepubliceerd in: Journal of Foot and Ankle Research | bijlage 1/2012

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Background

Children are more active during the school day than at other times [1] and because school shoes are required as part of a uniform in many countries research on school shoes is required. This study aimed to determine the effect of school shoes on the ankle joint complex motion of children while running.

Materials and methods

Twenty children (mean age 9 years (SD2.3)) performed five running trials at a self-selected velocity barefoot and wearing school shoes (Daytona, Clarks) in a random order. A 14 camera 200Hz motion analysis system (EVaRT5.0, MAC) was used to calculate marker trajectories. Markers were attached to the right leg and a cluster wand was attached to the calcaneus through a window in the shoe. A standing reference trial was used to embed segment axes and then calculate ankle joint complex motion. Force plate data were collected at 1000Hz (Kistler™). Data were normalised to the stance phase and sub-phases partitioned from the anterior/posterior force data as: loading (initial-contact – maximum-negative force); mid-stance (maximum-negative force – zero) and propulsion (positive force – toe-off).

Results

Shoes delayed the maximum-posterior force (22.8% to 29.3%; p<0.0001) and the zero crossing of the anterior-posterior force (41.1% to 43.6%; p=0.021). During loading shoes increased ankle range of motion (ROM) in the sagittal (9.9° to 13.8°; p=0.007) and transverse planes (5.7° to 7.7°; p=0.007). During midstance shoes decreased ankle frontal plane ROM (3.7° to 2.8°; p=0.037). During propulsion shoes increased ankle ROM in the sagittal plan (30.3° to 33.3°; p=0.018) and decreased frontal plane ROM (14.4° to 12.0°; p=0.042). Overall stance phase sagittal plane ROM increased in shoes (31.2° to 34.2°; p=0.034).

Conclusions

This study shows that school shoes increase sagittal ankle motion during loading and propulsion, but decrease frontal plane motion during mid-stance and propulsion. These findings will assist in harmonising school shoe design with foot function.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
1.
go back to reference Page A, Cooper AR, Stamatakis E, Foster LJ, Crowne EC, Sabin M, Shield JP: Physical activity patterns in nonobese and obese children assessed using minute-by-minute accelerometry. Int J Obes (Lond). 2005, 29: 1070-1076. 10.1038/sj.ijo.0802993.CrossRef Page A, Cooper AR, Stamatakis E, Foster LJ, Crowne EC, Sabin M, Shield JP: Physical activity patterns in nonobese and obese children assessed using minute-by-minute accelerometry. Int J Obes (Lond). 2005, 29: 1070-1076. 10.1038/sj.ijo.0802993.CrossRef
Metagegevens
Titel
Three-dimensional ankle kinematics in children’s school shoes during running
Auteurs
Caleb Wegener
Damien O’Meara
Adrienne E Hunt
Joshua Burns
Benedicte Vanwanseele
Andrew Greene
Richard M Smith
Publicatiedatum
01-12-2012
Uitgeverij
BioMed Central
Gepubliceerd in
Journal of Foot and Ankle Research / Uitgave bijlage 1/2012
Elektronisch ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-5-S1-O20

Andere artikelen bijlage 1/2012

Journal of Foot and Ankle Research 1/2012 Naar de uitgave