Skip to main content
Top
Gepubliceerd in:

25-03-2024 | Research

Theoretical explanations and the availability of information for learning via combined action observation and motor imagery: a commentary on Eaves et al. (2022)

Auteurs: Stephanie L. Romano Smith, James W. Roberts, Anthony J. Miller, Caroline J. Wakefield

Gepubliceerd in: Psychological Research | Uitgave 6/2024

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The recent review by Eaves et al. (Psychological Research/Psychologische Forschung, 2022) outlines the research conducted to-date on combined action-observation and motor imagery (AOMI), and more specifically, its added benefit to learning. Of interest, these findings have been primarily attributed to the dual action simulation hypothesis, whereby AO and MI activate separable representations for action that may be later merged when they are congruent with one another. The present commentary more closely evaluates this explanation. What’s more, we offer an alternative information-based argument where the benefit to learning may be served instead by the availability of key information. Along these lines, we speculate on possible future directions including the need for a transfer design.
Literatuur
go back to reference Azaad, S., & Sebanz, N. (2023). Potential benefits of synchronous action observation and motor imagery: a commentary on Eaves et al. 2022. Psychological Research, 1–3. Azaad, S., & Sebanz, N. (2023). Potential benefits of synchronous action observation and motor imagery: a commentary on Eaves et al. 2022. Psychological Research, 1–3.
go back to reference Bird, G., & Heyes, C. (2005). Effector-dependent learning by observation of a finger movement sequence. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 262.PubMed Bird, G., & Heyes, C. (2005). Effector-dependent learning by observation of a finger movement sequence. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 262.PubMed
go back to reference Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action observation and action in sequence learning and coding. Acta Psychologica, 135(2), 240–251.CrossRefPubMed Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action observation and action in sequence learning and coding. Acta Psychologica, 135(2), 240–251.CrossRefPubMed
go back to reference Bruton, A. M., Holmes, P. S., Eaves, D. L., Franklin, Z. C., & Wright, D. J. (2020). Neurophysiological markers discriminate different forms of motor imagery during action observation. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 124, 119–136.CrossRefPubMed Bruton, A. M., Holmes, P. S., Eaves, D. L., Franklin, Z. C., & Wright, D. J. (2020). Neurophysiological markers discriminate different forms of motor imagery during action observation. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 124, 119–136.CrossRefPubMed
go back to reference Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.CrossRefPubMed Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.CrossRefPubMed
go back to reference Deakin, J. M., & Proteau, L. (2000). The role of scheduling in learning through observation. Journal of Motor Behavior, 32(3), 268–276.CrossRefPubMed Deakin, J. M., & Proteau, L. (2000). The role of scheduling in learning through observation. Journal of Motor Behavior, 32(3), 268–276.CrossRefPubMed
go back to reference Eaves, D. L., Riach, M., Holmes, P. S., & Wright, D. J. (2016). Motor imagery during action observation: A brief review of evidence, theory and future research opportunities. Frontiers in Neuroscience, 10, 514.CrossRefPubMedPubMedCentral Eaves, D. L., Riach, M., Holmes, P. S., & Wright, D. J. (2016). Motor imagery during action observation: A brief review of evidence, theory and future research opportunities. Frontiers in Neuroscience, 10, 514.CrossRefPubMedPubMedCentral
go back to reference Eaves, D. L., Hodges, N. J., Buckingham, G., Buccino, G., & Vogt, S. (2022). Enhancing motor imagery practice using synchronous action observation. Psychological Research Psychologische Forschung, 1–17. Eaves, D. L., Hodges, N. J., Buckingham, G., Buccino, G., & Vogt, S. (2022). Enhancing motor imagery practice using synchronous action observation. Psychological Research Psychologische Forschung, 1–17.
go back to reference Frank, C., Wright, D. J., & Holmes, P. S. (2020). Mental simulation and neurocognition: Advances for motor imagery and action observation training in sport. In D. Hackfort & R. J. Schinke (Eds.), Routledge international encyclopedia of sport and exercise psychology. Volume 2: Applied and practical measures (pp. 411–428). Routledge. https://doi.org/10.4324/9781315187228. Frank, C., Wright, D. J., & Holmes, P. S. (2020). Mental simulation and neurocognition: Advances for motor imagery and action observation training in sport. In D. Hackfort & R. J. Schinke (Eds.), Routledge international encyclopedia of sport and exercise psychology. Volume 2: Applied and practical measures (pp. 411–428). Routledge. https://​doi.​org/​10.​4324/​9781315187228.
go back to reference Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRefPubMed Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233(4771), 1416–1419.CrossRefPubMed
go back to reference Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224.CrossRefPubMed Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224.CrossRefPubMed
go back to reference Hayes, S. J., Andrew, M., Elliott, D., Roberts, J. W., & Bennet, S. J. (2012a). Dissociable contributions of motor-execution and action-observation to intermanual transfer. Neuroscience Letters, 506(2), 346–350.CrossRefPubMed Hayes, S. J., Andrew, M., Elliott, D., Roberts, J. W., & Bennet, S. J. (2012a). Dissociable contributions of motor-execution and action-observation to intermanual transfer. Neuroscience Letters, 506(2), 346–350.CrossRefPubMed
go back to reference Hayes, S. J., Elliott, D., Andrew, M., Roberts, J. W., & Bennet, S. J. (2012b). Dissociable contributions of motor-execution and action-observation to intramanual transfer. Experimental Brain Research, 221, 459–466.CrossRefPubMed Hayes, S. J., Elliott, D., Andrew, M., Roberts, J. W., & Bennet, S. J. (2012b). Dissociable contributions of motor-execution and action-observation to intramanual transfer. Experimental Brain Research, 221, 459–466.CrossRefPubMed
go back to reference Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: Evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology Section A, 55(2), 593–607.CrossRef Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: Evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology Section A, 55(2), 593–607.CrossRef
go back to reference Kim, T., Frank, C., & Schack, T. (2020). The effect of alternate training of action observation and motor imagery on cognitive and skill performance. International Journal of Sport Psychology, 51(2), 101–121. Kim, T., Frank, C., & Schack, T. (2020). The effect of alternate training of action observation and motor imagery on cognitive and skill performance. International Journal of Sport Psychology, 51(2), 101–121.
go back to reference Mackrous, I., & Proteau, L. (2007). Specificity of practice results from differences in movement planning strategies. Experimental Brain Research, 183, 181–193.CrossRefPubMed Mackrous, I., & Proteau, L. (2007). Specificity of practice results from differences in movement planning strategies. Experimental Brain Research, 183, 181–193.CrossRefPubMed
go back to reference Marshall, B., Wright, D. J., Holmes, P. S., & Wood, G. (2020). Combining action observation and motor imagery improves eye-hand coordination during novel visuomotor performance. Journal of Motor Behavior, 52(3), 333–341.CrossRefPubMed Marshall, B., Wright, D. J., Holmes, P. S., & Wood, G. (2020). Combining action observation and motor imagery improves eye-hand coordination during novel visuomotor performance. Journal of Motor Behavior, 52(3), 333–341.CrossRefPubMed
go back to reference Meers, R., Nuttall, H. E., & Vogt, S. (2020). Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 126, 322–333.CrossRefPubMed Meers, R., Nuttall, H. E., & Vogt, S. (2020). Motor imagery alone drives corticospinal excitability during concurrent action observation and motor imagery. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 126, 322–333.CrossRefPubMed
go back to reference Osman, M., Bird, G., & Heyes, C. (2005). Action observation supports effector-dependent learning of finger movement sequences. Experimental Brain Research, 165, 19–27.CrossRefPubMed Osman, M., Bird, G., & Heyes, C. (2005). Action observation supports effector-dependent learning of finger movement sequences. Experimental Brain Research, 165, 19–27.CrossRefPubMed
go back to reference Romano-Smith, S. R., Wood, G., Coyles, G., Roberts, J. W., & Wakefield, C. J. (2019). The effect of action observation and motor imagery combinations on upper limb kinematics and EMG during dart-throwing. Scandinavian Journal of Medicine & Science in Sports, 29(12), 1917–1929.CrossRef Romano-Smith, S. R., Wood, G., Coyles, G., Roberts, J. W., & Wakefield, C. J. (2019). The effect of action observation and motor imagery combinations on upper limb kinematics and EMG during dart-throwing. Scandinavian Journal of Medicine & Science in Sports, 29(12), 1917–1929.CrossRef
go back to reference Romano-Smith, S., Roberts, J. W., Wood, G., Coyles, G., & Wakefield, C. J. (2022). Simultaneous and alternate combinations of action-observation and motor imagery involve a common lower-level sensorimotor process. Psychology of Sport and Exercise, 63, 102275.CrossRef Romano-Smith, S., Roberts, J. W., Wood, G., Coyles, G., & Wakefield, C. J. (2022). Simultaneous and alternate combinations of action-observation and motor imagery involve a common lower-level sensorimotor process. Psychology of Sport and Exercise, 63, 102275.CrossRef
go back to reference Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225.CrossRef Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82(4), 225.CrossRef
go back to reference Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32(1), 27–36.CrossRefPubMed Shea, C. H., Wright, D. L., Wulf, G., & Whitacre, C. (2000). Physical and observational practice afford unique learning opportunities. Journal of Motor Behavior, 32(1), 27–36.CrossRefPubMed
go back to reference Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.CrossRef Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. Acta Psychologica, 30, 276–315.CrossRef
go back to reference Trempe, M., Sabourin, M., Rohbanfard, H., & Proteau, L. (2011). Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task. Experimental Brain Research, 209, 181–192.CrossRefPubMed Trempe, M., Sabourin, M., Rohbanfard, H., & Proteau, L. (2011). Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task. Experimental Brain Research, 209, 181–192.CrossRefPubMed
go back to reference Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(11), 1212–1217.CrossRefPubMed Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3(11), 1212–1217.CrossRefPubMed
go back to reference Wright, D. J., Wood, G., Eaves, D. L., Bruton, A. M., Frank, C., & Franklin, Z. C. (2018). Corticospinal excitability is facilitated by combined action observation and motor imagery of a basketball free throw. Psychology of Sport and Exercise, 39, 114–121.CrossRef Wright, D. J., Wood, G., Eaves, D. L., Bruton, A. M., Frank, C., & Franklin, Z. C. (2018). Corticospinal excitability is facilitated by combined action observation and motor imagery of a basketball free throw. Psychology of Sport and Exercise, 39, 114–121.CrossRef
Metagegevens
Titel
Theoretical explanations and the availability of information for learning via combined action observation and motor imagery: a commentary on Eaves et al. (2022)
Auteurs
Stephanie L. Romano Smith
James W. Roberts
Anthony J. Miller
Caroline J. Wakefield
Publicatiedatum
25-03-2024
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 6/2024
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-024-01955-8