Skip to main content
main-content
Top

Tip

Swipe om te navigeren naar een ander artikel

Gepubliceerd in: Quality of Life Research 1/2007

01-08-2007 | Original Paper

The role of the bifactor model in resolving dimensionality issues in health outcomes measures

Auteurs: Steven P. Reise, Julien Morizot, Ron D. Hays

Gepubliceerd in: Quality of Life Research | bijlage 1/2007

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Objectives

We propose the application of a bifactor model for exploring the dimensional structure of an item response matrix, and for handling multidimensionality.

Background

We argue that a bifactor analysis can complement traditional dimensionality investigations by: (a) providing an evaluation of the distortion that may occur when unidimensional models are fit to multidimensional data, (b) allowing researchers to examine the utility of forming subscales, and, (c) providing an alternative to non-hierarchical multidimensional models for scaling individual differences.

Method

To demonstrate our arguments, we use responses (N =  1,000 Medicaid recipients) to 16 items in the Consumer Assessment of Healthcare Providers and Systems (CAHPS©2.0) survey.

Analyses

Exploratory and confirmatory factor analytic and item response theory models (unidimensional, multidimensional, and bifactor) were estimated.

Results

CAHPS© items are consistent with both unidimensional and multidimensional solutions. However, the bifactor model revealed that the overwhelming majority of common variance was due to a general factor. After controlling for the general factor, subscales provided little measurement precision.

Conclusion

The bifactor model provides a valuable tool for exploring dimensionality related questions. In the Discussion, we describe contexts where a bifactor analysis is most productively used, and we contrast bifactor with multidimensional IRT models (MIRT). We also describe implications of bifactor models for IRT applications, and raise some limitations.
Literatuur
1.
go back to reference Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum. Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.
2.
go back to reference Bjorner, J. B., Kosinksi, M., & Ware, J. E. Jr. (2003a). The feasibility of applying item response theory to measures of migraine impact: A re-analysis of three clinical studies. Quality of Life Research, 12, 887–902. PubMedCrossRef Bjorner, J. B., Kosinksi, M., & Ware, J. E. Jr. (2003a). The feasibility of applying item response theory to measures of migraine impact: A re-analysis of three clinical studies. Quality of Life Research, 12, 887–902. PubMedCrossRef
3.
go back to reference Bjorner, J. B., Kosinksi, M., & Ware, J. E., Jr. (2003b). Using item response theory to calibrate the Headache Impact Test (HIT TM) to the metric of traditional scales. Quality of Life Research, 12, 981–1002. PubMedCrossRef Bjorner, J. B., Kosinksi, M., & Ware, J. E., Jr. (2003b). Using item response theory to calibrate the Headache Impact Test (HIT TM) to the metric of traditional scales. Quality of Life Research, 12, 981–1002. PubMedCrossRef
4.
go back to reference Bjorner, J. B., Kosinksi, M., & Ware, J. E., Jr. (2003c). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the Headache Impact Test (HIT TM) to the metric of traditional scales. Quality of Life Research, 12, 913–933. PubMedCrossRef Bjorner, J. B., Kosinksi, M., & Ware, J. E., Jr. (2003c). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the Headache Impact Test (HIT TM) to the metric of traditional scales. Quality of Life Research, 12, 913–933. PubMedCrossRef
5.
go back to reference Haley, S. M., McHorney, C. A., & Ware, J. E., Jr. (1994). Evaluation of the MOS SF-36 physical functioning scale (PF-10): I. unidimensionality and reproducibility of the Rasch item scale. Journal of Clinical Epidemiology, 47, 671–684. PubMedCrossRef Haley, S. M., McHorney, C. A., & Ware, J. E., Jr. (1994). Evaluation of the MOS SF-36 physical functioning scale (PF-10): I. unidimensionality and reproducibility of the Rasch item scale. Journal of Clinical Epidemiology, 47, 671–684. PubMedCrossRef
6.
go back to reference Hambleton, R. K. (2000). Emergence of item response modeling in instrument development and data analysis. Medical Care, 38(Suppl. 9), 60–65. Hambleton, R. K. (2000). Emergence of item response modeling in instrument development and data analysis. Medical Care, 38(Suppl. 9), 60–65.
7.
go back to reference Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38(Suppl. 2), 28–42. Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38(Suppl. 2), 28–42.
8.
go back to reference Reise, S. P. (2004). Item response theory and its applications for cancer outcomes measurement. In J. Lipscomb, C. C. Gotay, & C. F. Snyder (Eds.), The cancer outcomes measurement working group (COMWG): An NCI initiative to improve the science of outcomes measurement in cancer (pp. 425–444). Boston, MA: Cambridge University Press. Reise, S. P. (2004). Item response theory and its applications for cancer outcomes measurement. In J. Lipscomb, C. C. Gotay, & C. F. Snyder (Eds.), The cancer outcomes measurement working group (COMWG): An NCI initiative to improve the science of outcomes measurement in cancer (pp. 425–444). Boston, MA: Cambridge University Press.
9.
go back to reference Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5–32. CrossRef Christoffersson, A. (1975). Factor analysis of dichotomized variables. Psychometrika, 40, 5–32. CrossRef
10.
go back to reference Knol, D. L., & Berger, M. P. F. (1991). Empirical comparison between factor analytic and multidimensional item response models. Multivariate Behavioral Research, 26, 457–477. CrossRef Knol, D. L., & Berger, M. P. F. (1991). Empirical comparison between factor analytic and multidimensional item response models. Multivariate Behavioral Research, 26, 457–477. CrossRef
11.
go back to reference McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Erlbaum. McDonald, R. P. (1999). Test theory: A unified approach. Mahwah, NJ: Erlbaum.
12.
go back to reference McDonald, R. P. (2000). A basis for multidimensional item response theory. Applied Psychological Measurement, 24, 99–114. CrossRef McDonald, R. P. (2000). A basis for multidimensional item response theory. Applied Psychological Measurement, 24, 99–114. CrossRef
13.
go back to reference Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408. CrossRef Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408. CrossRef
14.
go back to reference Agency for Healthcare Policy and Research. (1999). Consumer Assessment of Health Plans Study – CAHPS© 2.0 survey and reporting kit. Rockville, Maryland: Author (AHPR). Agency for Healthcare Policy and Research. (1999). Consumer Assessment of Health Plans Study – CAHPS© 2.0 survey and reporting kit. Rockville, Maryland: Author (AHPR).
15.
go back to reference Hargraves, J. L., Hays, R. D., & Cleary, P. D. (2003). Psychometric properties of the Consumer Assessment of Health Plans Study (CAHPS®) 2.0 adult core survey. Health Services Research, 38, 1509–1527. PubMedCrossRef Hargraves, J. L., Hays, R. D., & Cleary, P. D. (2003). Psychometric properties of the Consumer Assessment of Health Plans Study (CAHPS®) 2.0 adult core survey. Health Services Research, 38, 1509–1527. PubMedCrossRef
16.
go back to reference Reise, S. P., Meijer, R. R., Ainsworth, A. T., Morales, L. S., & Hays, R. D. (2006). Application of group level item response models in the evaluation of consumer reports about health plan quality. Multivariate Behavioral Research, 41, 85–102. CrossRef Reise, S. P., Meijer, R. R., Ainsworth, A. T., Morales, L. S., & Hays, R. D. (2006). Application of group level item response models in the evaluation of consumer reports about health plan quality. Multivariate Behavioral Research, 41, 85–102. CrossRef
17.
go back to reference Reise, S. P., Waller, N. G., & Comrey, A. L. (2000). Factor analysis and scale revision. Psychological Assessment, 12, 287–297. PubMedCrossRef Reise, S. P., Waller, N. G., & Comrey, A. L. (2000). Factor analysis and scale revision. Psychological Assessment, 12, 287–297. PubMedCrossRef
18.
go back to reference Reitan, R. M., & Wolfson, D. (1996). Theoretical, methodological, and validational bases of the Halstein-Reitan Neuropsychological Test Battery. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorder. New York: Oxford University Press. Reitan, R. M., & Wolfson, D. (1996). Theoretical, methodological, and validational bases of the Halstein-Reitan Neuropsychological Test Battery. In I. Grant & K. M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric disorder. New York: Oxford University Press.
19.
go back to reference Cattell, R. B. (1966). Psychological theory and scientific method. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 1–18). Chicago: Rand McNally. Cattell, R. B. (1966). Psychological theory and scientific method. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology (pp. 1–18). Chicago: Rand McNally.
20.
go back to reference Ackerman, T. A. (1994). Using multidimensional item response theory to understand what items and tests are measuring. Applied Measurement in Education, 18, 225–278. Ackerman, T. A. (1994). Using multidimensional item response theory to understand what items and tests are measuring. Applied Measurement in Education, 18, 225–278.
21.
go back to reference Ackerman, T. A. (1996). Graphical representation of multidimensional item response theory analyses. Applied Psychological Measurement, 4, 311–330. CrossRef Ackerman, T. A. (1996). Graphical representation of multidimensional item response theory analyses. Applied Psychological Measurement, 4, 311–330. CrossRef
22.
go back to reference Reckase, M. D. (1997). The past and future of multidimensional item response theory. Applied Psychological Measurement, 21, 25–36. CrossRef Reckase, M. D. (1997). The past and future of multidimensional item response theory. Applied Psychological Measurement, 21, 25–36. CrossRef
23.
go back to reference Reckase, M. D., Ackerman, T. A., & Carlson, J. E. (1988). Building a unidimensional test using multidimensional items. Journal of Educational Measurement, 25, 193–203. CrossRef Reckase, M. D., Ackerman, T. A., & Carlson, J. E. (1988). Building a unidimensional test using multidimensional items. Journal of Educational Measurement, 25, 193–203. CrossRef
24.
go back to reference McDonald, R. P. (1981). The dimensionality of test and items. British Journal of Mathematical and Statistical Psychology, 34, 100–117. McDonald, R. P. (1981). The dimensionality of test and items. British Journal of Mathematical and Statistical Psychology, 34, 100–117.
25.
go back to reference Hattie, J. (1985). Methodology review: Assessing unidimensionality of test and items. Applied Psychological Measurement, 9, 139–164. CrossRef Hattie, J. (1985). Methodology review: Assessing unidimensionality of test and items. Applied Psychological Measurement, 9, 139–164. CrossRef
26.
go back to reference Chernyshenko, O. S., Stark, S., & Chan, K. Y. (2001). Investigating the hierarchical factor structure of the fifth edition of the 16PF: An application of the Schmid-Leiman orthogonalization procedure. Educational and Psychological Measurement, 61, 290–302. CrossRef Chernyshenko, O. S., Stark, S., & Chan, K. Y. (2001). Investigating the hierarchical factor structure of the fifth edition of the 16PF: An application of the Schmid-Leiman orthogonalization procedure. Educational and Psychological Measurement, 61, 290–302. CrossRef
27.
go back to reference Drasgow, F., & Lissak, R. I. (1983). Modified parallel analysis: A procedure for examining the latent dimensionality of dichotomously scored item responses. Journal of Applied Psychology, 68, 363–373. CrossRef Drasgow, F., & Lissak, R. I. (1983). Modified parallel analysis: A procedure for examining the latent dimensionality of dichotomously scored item responses. Journal of Applied Psychology, 68, 363–373. CrossRef
28.
go back to reference Nandakumar, R., & Stout, W. F. (1993). Refinement of Stout’s procedure for assessing latent trait dimensionality. Journal of Educational Statistics, 18, 41–68. CrossRef Nandakumar, R., & Stout, W. F. (1993). Refinement of Stout’s procedure for assessing latent trait dimensionality. Journal of Educational Statistics, 18, 41–68. CrossRef
29.
go back to reference Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52, 589–617. CrossRef Stout, W. (1987). A nonparametric approach for assessing latent trait unidimensionality. Psychometrika, 52, 589–617. CrossRef
30.
go back to reference Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bifactor analysis. Psychometrika, 57, 423–436. CrossRef Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bifactor analysis. Psychometrika, 57, 423–436. CrossRef
31.
go back to reference Holzinger, K. J., & Swineford, F. (1937). The bifactor method. Psychometrika, 2, 41–54. CrossRef Holzinger, K. J., & Swineford, F. (1937). The bifactor method. Psychometrika, 2, 41–54. CrossRef
32.
go back to reference Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61. CrossRef Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53–61. CrossRef
33.
go back to reference Yung, Y. F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113–128. CrossRef Yung, Y. F., Thissen, D., & McLeod, L. D. (1999). On the relationship between the higher-order factor model and the hierarchical factor model. Psychometrika, 64, 113–128. CrossRef
34.
go back to reference Gustafsson, J., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28, 407–434. CrossRef Gustafsson, J., & Balke, G. (1993). General and specific abilities as predictors of school achievement. Multivariate Behavioral Research, 28, 407–434. CrossRef
35.
go back to reference Wang, W., Chen, P., & Cheng, Y. (2004). Improving measurement precision of test batteries using multidimensional item response models. Psychological Methods, 9, 116–136. PubMedCrossRef Wang, W., Chen, P., & Cheng, Y. (2004). Improving measurement precision of test batteries using multidimensional item response models. Psychological Methods, 9, 116–136. PubMedCrossRef
36.
go back to reference Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika 61, 331–354. CrossRef Segall, D. O. (1996). Multidimensional adaptive testing. Psychometrika 61, 331–354. CrossRef
37.
go back to reference Rindskopf, D., & Rose, T. (1988). Some theory and applications of confirmatory second-order factor analysis. Multivariate Behavioral Research, 23, 51–67. CrossRef Rindskopf, D., & Rose, T. (1988). Some theory and applications of confirmatory second-order factor analysis. Multivariate Behavioral Research, 23, 51–67. CrossRef
38.
go back to reference Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41, 189–224. CrossRef Chen, F. F., West, S. G., & Sousa, K. H. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41, 189–224. CrossRef
39.
go back to reference Waller, N. G. (2001). MicroFACT 2.0: A microcomputer factor analysis program for ordered polytomous data and mainframe size problems [computer program]. St. Paul, MN: Assessment Systems Corporation. Waller, N. G. (2001). MicroFACT 2.0: A microcomputer factor analysis program for ordered polytomous data and mainframe size problems [computer program]. St. Paul, MN: Assessment Systems Corporation.
40.
go back to reference Wolff, H., & Preising, K. (2005). Exploring item and higher order factor structure with the Schmid-Leiman solution: Syntax codes for SPSS and SAS. Behavioral Research Methods, 37, 48–58. Wolff, H., & Preising, K. (2005). Exploring item and higher order factor structure with the Schmid-Leiman solution: Syntax codes for SPSS and SAS. Behavioral Research Methods, 37, 48–58.
41.
go back to reference Muthén, L. K., & Muthén, B. O. (2004). Mplus user’s guide [version 3; computer program]. Los Angeles, CA: Muthén & Muthén. Muthén, L. K., & Muthén, B. O. (2004). Mplus user’s guide [version 3; computer program]. Los Angeles, CA: Muthén & Muthén.
42.
go back to reference Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwartz criterion. Journal of the American Statistical Association, 90, 928–934. CrossRef Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwartz criterion. Journal of the American Statistical Association, 90, 928–934. CrossRef
43.
go back to reference Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 34, 100–114. Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph Supplement, 34, 100–114.
44.
go back to reference Muraki, E., & Carlson, J. E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73–90. CrossRef Muraki, E., & Carlson, J. E. (1995). Full-information factor analysis for polytomous item responses. Applied Psychological Measurement, 19, 73–90. CrossRef
45.
go back to reference Wood, R., Wilson, D., Gibbons, R., Schilling, S., Muraki, E., & Bock, R. D. (2003). TESTFACT: Test scoring, item statistics, and item factor analysis [version 4; computer program]. Lincolnwood, IL: Scientific Software International, Inc. Wood, R., Wilson, D., Gibbons, R., Schilling, S., Muraki, E., & Bock, R. D. (2003). TESTFACT: Test scoring, item statistics, and item factor analysis [version 4; computer program]. Lincolnwood, IL: Scientific Software International, Inc.
46.
go back to reference Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full information item factor analysis. Applied Psychological Measurement, 12, 261–280. CrossRef Bock, R. D., Gibbons, R., & Muraki, E. (1988). Full information item factor analysis. Applied Psychological Measurement, 12, 261–280. CrossRef
47.
go back to reference Swygert, K. A., McLeod, L. D., & Thissen, D. (2001). Factor analysis for items or testlets scored in more than two categories. In D. Thissen & H. Wainer (Eds.), Test scoring (pp. 217–250). Mahwah, NJ: Erlbaum. Swygert, K. A., McLeod, L. D., & Thissen, D. (2001). Factor analysis for items or testlets scored in more than two categories. In D. Thissen & H. Wainer (Eds.), Test scoring (pp. 217–250). Mahwah, NJ: Erlbaum.
48.
go back to reference Steinberg, L., & Thissen, D. (1996). Uses of item response theory and the testlet concept in the measurement of psychopathology. Psychological Methods, 1, 81–97. CrossRef Steinberg, L., & Thissen, D. (1996). Uses of item response theory and the testlet concept in the measurement of psychopathology. Psychological Methods, 1, 81–97. CrossRef
49.
go back to reference Davey, T., Oshima, T. C., & Lee, K. (1996). Linking multidimensional item calibrations. Applied Psychological Measurement, 20, 405–416. CrossRef Davey, T., Oshima, T. C., & Lee, K. (1996). Linking multidimensional item calibrations. Applied Psychological Measurement, 20, 405–416. CrossRef
50.
go back to reference Li, Y. H., & Lissitz, R. W. (2000). An evaluation of the accuracy of multidimensional IRT linking. Applied Psychological Measurement, 24, 115–138. Li, Y. H., & Lissitz, R. W. (2000). An evaluation of the accuracy of multidimensional IRT linking. Applied Psychological Measurement, 24, 115–138.
51.
go back to reference Ackerman, T. A. (1992). An explanation of differential item functioning from a multidimensional perspective. Journal of Educational Measurement, 24, 67–91. CrossRef Ackerman, T. A. (1992). An explanation of differential item functioning from a multidimensional perspective. Journal of Educational Measurement, 24, 67–91. CrossRef
52.
go back to reference Roussos, L., & Stout, W. (1996). A multidimensionality-based DIF analysis paradigm. Applied Psychological Measurement, 20, 355–371. CrossRef Roussos, L., & Stout, W. (1996). A multidimensionality-based DIF analysis paradigm. Applied Psychological Measurement, 20, 355–371. CrossRef
53.
go back to reference Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491. PubMedCrossRef Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491. PubMedCrossRef
54.
go back to reference Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267–269. CrossRef Fraser, C., & McDonald, R. P. (1988). NOHARM: Least squares item factor analysis. Multivariate Behavioral Research, 23, 267–269. CrossRef
55.
go back to reference Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K., Kupfer, D. J., Frank, E., Grochocinski, V. J., & Stover, A. (2007). Full-information item bi-factor analysis of graded response data. Applied Psychological Measurement, 31, 4–19. CrossRef Gibbons, R. D., Bock, R. D., Hedeker, D., Weiss, D. J., Segawa, E., Bhaumik, D. K., Kupfer, D. J., Frank, E., Grochocinski, V. J., & Stover, A. (2007). Full-information item bi-factor analysis of graded response data. Applied Psychological Measurement, 31, 4–19. CrossRef
56.
go back to reference Jöreskog, K. G., & Sörbom, D. (1995). LISREL 8 users’s reference guide [computer program]. Chicago: Scientific Software. Jöreskog, K. G., & Sörbom, D. (1995). LISREL 8 users’s reference guide [computer program]. Chicago: Scientific Software.
Metagegevens
Titel
The role of the bifactor model in resolving dimensionality issues in health outcomes measures
Auteurs
Steven P. Reise
Julien Morizot
Ron D. Hays
Publicatiedatum
01-08-2007
Uitgeverij
Springer Netherlands
Gepubliceerd in
Quality of Life Research / Uitgave bijlage 1/2007
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-007-9183-7

Andere artikelen bijlage 1/2007

Quality of Life Research 1/2007 Naar de uitgave