Skip to main content
Top
Gepubliceerd in: Psychological Research 1/2023

26-02-2022 | Review

The molecular genetic basis of creativity: a mini review and perspectives

Auteurs: Shun Zhang, Xiaolei Yang, Bozheng Zhang, Jinghuan Zhang

Gepubliceerd in: Psychological Research | Uitgave 1/2023

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Although creativity is one of the defining features of human species, it is just the beginning of an ambitious attempt for psychologists to understand its genetic basis. With ongoing efforts, great progress has been achieved in molecular genetic studies of creativity. In this mini review, we highlighted recent molecular genetic findings for both domain-general and domain-specific creativity, and provided some perspectives for future studies. It is expected that this work will provide an update on the knowledge regarding the molecular genetic basis of creativity, and contribute to the further development of this field.
Literatuur
go back to reference Abraham, A. (2018). The neuroscience of creativity (Cambridge fundamentals of neuroscience in psychology). Cambridge University Press.CrossRef Abraham, A. (2018). The neuroscience of creativity (Cambridge fundamentals of neuroscience in psychology). Cambridge University Press.CrossRef
go back to reference Aguilera, M., Barrantes-Vidal, N., Arias, B., Moya, J., Villa, H., Ibanez, M. I., et al. (2008). Putative role of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 147B, 898–902.CrossRef Aguilera, M., Barrantes-Vidal, N., Arias, B., Moya, J., Villa, H., Ibanez, M. I., et al. (2008). Putative role of the COMT gene polymorphism (Val158Met) on verbal working memory functioning in a healthy population. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 147B, 898–902.CrossRef
go back to reference Akbari Chermahini, S., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115, 458–465.CrossRef Akbari Chermahini, S., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115, 458–465.CrossRef
go back to reference Albert, F. W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16, 197–212.CrossRef Albert, F. W., & Kruglyak, L. (2015). The role of regulatory variation in complex traits and disease. Nature Reviews Genetics, 16, 197–212.CrossRef
go back to reference Bachner-Melman, R., Dina, C., Zohar, A. H., Constantini, N., Lerer, E., Hoch, S., et al. (2005). AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1, e42.CrossRef Bachner-Melman, R., Dina, C., Zohar, A. H., Constantini, N., Lerer, E., Hoch, S., et al. (2005). AVPR1a and SLC6A4 gene polymorphisms are associated with creative dance performance. PLoS Genetics, 1, e42.CrossRef
go back to reference Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11, 173–177.CrossRef Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11, 173–177.CrossRef
go back to reference Baer, J. (2012). Domain specificity and the limits of creativity theory. Journal of Creative Behavior, 46, 16–29.CrossRef Baer, J. (2012). Domain specificity and the limits of creativity theory. Journal of Creative Behavior, 46, 16–29.CrossRef
go back to reference Baer, J., & Kaufman, J. C. (2005). Bridging generality and specificity: The amusement park theoretical (APT) model of creativity. Roeper Review, 27, 158–163.CrossRef Baer, J., & Kaufman, J. C. (2005). Bridging generality and specificity: The amusement park theoretical (APT) model of creativity. Roeper Review, 27, 158–163.CrossRef
go back to reference Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., et al. (2018). Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature Communications, 9, 1825.CrossRef Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M., et al. (2018). Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature Communications, 9, 1825.CrossRef
go back to reference Barbot, B., & Eff, H. (2019). The genetic basis of creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity (Cambridge Handbooks in Psychology) (pp. 132–147). Cambridge University Press.CrossRef Barbot, B., & Eff, H. (2019). The genetic basis of creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity (Cambridge Handbooks in Psychology) (pp. 132–147). Cambridge University Press.CrossRef
go back to reference Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience & Biobehavioral Reviews, 51, 108–117.CrossRef Beaty, R. E. (2015). The neuroscience of musical improvisation. Neuroscience & Biobehavioral Reviews, 51, 108–117.CrossRef
go back to reference Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 87–95.CrossRef Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 20, 87–95.CrossRef
go back to reference Bigos, K. L., & Weinberger, D. R. (2010). Imaging genetics-days of future past. NeuroImage, 53, 804–809.CrossRef Bigos, K. L., & Weinberger, D. R. (2010). Imaging genetics-days of future past. NeuroImage, 53, 804–809.CrossRef
go back to reference Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004). The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29, 1943–1961.CrossRef Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004). The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29, 1943–1961.CrossRef
go back to reference Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195.CrossRef Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195.CrossRef
go back to reference Bogdan, R., Salmeron, B. J., Carey, C. E., Agrawal, A., Calhoun, V. D., Garavan, H., et al. (2017). Imaging genetics and genomics in psychiatry: A critical review of progress and potential. Biological Psychiatry, 82, 165–175.CrossRef Bogdan, R., Salmeron, B. J., Carey, C. E., Agrawal, A., Calhoun, V. D., Garavan, H., et al. (2017). Imaging genetics and genomics in psychiatry: A critical review of progress and potential. Biological Psychiatry, 82, 165–175.CrossRef
go back to reference Boot, N., Baas, M., van Gaal, S., Cools, R., & De Dreu, C. K. W. (2017). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience & Biobehavioral Reviews, 78, 13–23.CrossRef Boot, N., Baas, M., van Gaal, S., Cools, R., & De Dreu, C. K. W. (2017). Creative cognition and dopaminergic modulation of fronto-striatal networks: Integrative review and research agenda. Neuroscience & Biobehavioral Reviews, 78, 13–23.CrossRef
go back to reference Bruder, G. E., Keilp, J. G., Xu, H., Shikhman, M., Schori, E., Gorman, J. M., et al. (2005). Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biological Psychiatry, 58, 901–907.CrossRef Bruder, G. E., Keilp, J. G., Xu, H., Shikhman, M., Schori, E., Gorman, J. M., et al. (2005). Catechol-O-methyltransferase (COMT) genotypes and working memory: Associations with differing cognitive operations. Biological Psychiatry, 58, 901–907.CrossRef
go back to reference Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75, 807–821.CrossRef Chen, J., Lipska, B. K., Halim, N., Ma, Q. D., Matsumoto, M., Melhem, S., et al. (2004). Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain. American Journal of Human Genetics, 75, 807–821.CrossRef
go back to reference Chen, Q., Beaty, R. E., & Qiu, J. (2020). Mapping the artistic brain: Common and distinct neural activations associated with musical, drawing, and literary creativity. Human Brain Mapping, 41, 3403–3419.CrossRef Chen, Q., Beaty, R. E., & Qiu, J. (2020). Mapping the artistic brain: Common and distinct neural activations associated with musical, drawing, and literary creativity. Human Brain Mapping, 41, 3403–3419.CrossRef
go back to reference Congdon, E., Lesch, K. P., & Canli, T. (2008). Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: Implications for impulsivity. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 147B, 27–32.CrossRef Congdon, E., Lesch, K. P., & Canli, T. (2008). Analysis of DRD4 and DAT polymorphisms and behavioral inhibition in healthy adults: Implications for impulsivity. American Journal of Medical Genetics Part b: Neuropsychiatric Genetics, 147B, 27–32.CrossRef
go back to reference Cools, R., & d’Esposito, M. (2009). Dopaminergic modulation of flexible cognitive control in humans. In A. Björklund, S. Dunnet, L. Iversen, & S. Iversen (Eds.), Dopamine Handbook (pp. 249–260). Oxford University Press.CrossRef Cools, R., & d’Esposito, M. (2009). Dopaminergic modulation of flexible cognitive control in humans. In A. Björklund, S. Dunnet, L. Iversen, & S. Iversen (Eds.), Dopamine Handbook (pp. 249–260). Oxford University Press.CrossRef
go back to reference Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9, 2098.CrossRef Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9, 2098.CrossRef
go back to reference de Moor, M. H., Costa, P. T., Terracciano, A., Krueger, R. F., de Geus, E. J., Toshiko, T., et al. (2012). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17, 337–349.CrossRef de Moor, M. H., Costa, P. T., Terracciano, A., Krueger, R. F., de Geus, E. J., Toshiko, T., et al. (2012). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17, 337–349.CrossRef
go back to reference Diaz-Asper, C. M., Goldberg, T. E., Kolachana, B. S., Straub, R. E., Egan, M. F., & Weinberger, D. R. (2008). Genetic variation in catechol-O-methyltransferase: Effects on working memory in schizophrenic patients, their siblings, and healthy controls. Biological Psychiatry, 63, 72–79.CrossRef Diaz-Asper, C. M., Goldberg, T. E., Kolachana, B. S., Straub, R. E., Egan, M. F., & Weinberger, D. R. (2008). Genetic variation in catechol-O-methyltransferase: Effects on working memory in schizophrenic patients, their siblings, and healthy controls. Biological Psychiatry, 63, 72–79.CrossRef
go back to reference Djurovic, S., Le Hellard, S., Kahler, A. K., Jonsson, E. G., Agartz, I., Steen, V. M., et al. (2009). Association of MCTP2 gene variants with schizophrenia in three independent samples of Scandinavian origin (SCOPE). Psychiatry Research, 168, 256–258.CrossRef Djurovic, S., Le Hellard, S., Kahler, A. K., Jonsson, E. G., Agartz, I., Steen, V. M., et al. (2009). Association of MCTP2 gene variants with schizophrenia in three independent samples of Scandinavian origin (SCOPE). Psychiatry Research, 168, 256–258.CrossRef
go back to reference Dreber, A., Apicella, C. L., Eisenberg, D. T., Garcia, J. R., Zamore, R. S., Lum, J. K., et al. (2009). The 7R polymorphism in the dopamine receptor D4 gene (DRD4) is associated with financial risk taking in men. Evolution and Human Behavior, 30, 85–92.CrossRef Dreber, A., Apicella, C. L., Eisenberg, D. T., Garcia, J. R., Zamore, R. S., Lum, J. K., et al. (2009). The 7R polymorphism in the dopamine receptor D4 gene (DRD4) is associated with financial risk taking in men. Evolution and Human Behavior, 30, 85–92.CrossRef
go back to reference Dreher, J. C., Kohn, P., Kolachana, B., Weinberger, D. R., & Berman, K. F. (2009). Variation in dopamine genes influences responsivity of the human reward system. Proceedings of the National Academy of Sciences of the United States of America, 106, 617–622.CrossRef Dreher, J. C., Kohn, P., Kolachana, B., Weinberger, D. R., & Berman, K. F. (2009). Variation in dopamine genes influences responsivity of the human reward system. Proceedings of the National Academy of Sciences of the United States of America, 106, 617–622.CrossRef
go back to reference Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9, e1003348.CrossRef Dudbridge, F. (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics, 9, e1003348.CrossRef
go back to reference Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 6917–6922.CrossRef Egan, M. F., Goldberg, T. E., Kolachana, B. S., Callicott, J. H., Mazzanti, C. M., Straub, R. E., et al. (2001). Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 6917–6922.CrossRef
go back to reference Egashira, N., Mishima, K., Iwasaki, K., Oishi, R., & Fujiwara, M. (2009). New topics in vasopressin receptors and approach to novel drugs: Role of the vasopressin receptor in psychological and cognitive functions. Journal of Pharmacological Sciences, 109, 44–49.CrossRef Egashira, N., Mishima, K., Iwasaki, K., Oishi, R., & Fujiwara, M. (2009). New topics in vasopressin receptors and approach to novel drugs: Role of the vasopressin receptor in psychological and cognitive functions. Journal of Pharmacological Sciences, 109, 44–49.CrossRef
go back to reference Fink, S., Excoffier, L., & Heckel, G. (2007). High variability and non-neutral evolution of the mammalian avpr1a gene. BMC Ecology and Evolution, 7, 176. Fink, S., Excoffier, L., & Heckel, G. (2007). High variability and non-neutral evolution of the mammalian avpr1a gene. BMC Ecology and Evolution, 7, 176.
go back to reference Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. Journal of Comparative Neurology, 493, 147–153.CrossRef Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. Journal of Comparative Neurology, 493, 147–153.CrossRef
go back to reference Flaherty, A. W. (2011). Brain illness and creativity: Mechanisms and treatment risks. The Canadian Journal of Psychiatry, 56, 132–143.CrossRef Flaherty, A. W. (2011). Brain illness and creativity: Mechanisms and treatment risks. The Canadian Journal of Psychiatry, 56, 132–143.CrossRef
go back to reference Gamazon, E. R., Segre, A. V., van de Bunt, M., Wen, X., Xi, H. S., Hormozdiari, F., et al. (2018). Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nature Genetics, 50, 956–967.CrossRef Gamazon, E. R., Segre, A. V., van de Bunt, M., Wen, X., Xi, H. S., Hormozdiari, F., et al. (2018). Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nature Genetics, 50, 956–967.CrossRef
go back to reference Gamazon, E. R., Zwinderman, A. H., Cox, N. J., Denys, D., & Derks, E. M. (2019). Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nature Genetics, 51, 933–940.CrossRef Gamazon, E. R., Zwinderman, A. H., Cox, N. J., Denys, D., & Derks, E. M. (2019). Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nature Genetics, 51, 933–940.CrossRef
go back to reference Garcia-Garcia, M., Barcelo, F., Clemente, I. C., & Escera, C. (2010). The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 31, 754–760.CrossRef Garcia-Garcia, M., Barcelo, F., Clemente, I. C., & Escera, C. (2010). The role of the dopamine transporter DAT1 genotype on the neural correlates of cognitive flexibility. European Journal of Neuroscience, 31, 754–760.CrossRef
go back to reference Gerring, Z. F., Mina-Vargas, A., Gamazon, E. R., & Derks, E. M. (2021). E-MAGMA: An eQTL-informed method to identify risk genes using genome-wide association study summary statistics. Bioinformatics, 37, 2245–2249. Gerring, Z. F., Mina-Vargas, A., Gamazon, E. R., & Derks, E. M. (2021). E-MAGMA: An eQTL-informed method to identify risk genes using genome-wide association study summary statistics. Bioinformatics, 37, 2245–2249.
go back to reference Gluskin, B. S., & Mickey, B. J. (2016). Genetic variation and dopamine D2 receptor availability: A systematic review and meta-analysis of human in vivo molecular imaging studies. Translational Psychiatry, 6, e747.CrossRef Gluskin, B. S., & Mickey, B. J. (2016). Genetic variation and dopamine D2 receptor availability: A systematic review and meta-analysis of human in vivo molecular imaging studies. Translational Psychiatry, 6, e747.CrossRef
go back to reference Gratten, J., Wray, N. R., Keller, M. C., & Visscher, P. M. (2014). Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nature Neuroscience, 17, 782–790.CrossRef Gratten, J., Wray, N. R., Keller, M. C., & Visscher, P. M. (2014). Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nature Neuroscience, 17, 782–790.CrossRef
go back to reference Grigorenko, E. L. (2017). Creativity and the genome: The state of affairs. Journal of Creative Behavior, 51, 327–329.CrossRef Grigorenko, E. L. (2017). Creativity and the genome: The state of affairs. Journal of Creative Behavior, 51, 327–329.CrossRef
go back to reference Grigorenko, E. L., LaBude, M. C., & Carter, A. S. (1992). Similarity in general cognitive ability, creativity, and cognitive style in a sample of adolescent Russian twins. Acta Geneticae Medicae Et Gemellologiae: Twin Research, 41, 65–72.CrossRef Grigorenko, E. L., LaBude, M. C., & Carter, A. S. (1992). Similarity in general cognitive ability, creativity, and cognitive style in a sample of adolescent Russian twins. Acta Geneticae Medicae Et Gemellologiae: Twin Research, 41, 65–72.CrossRef
go back to reference Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 48, 245–252.CrossRef Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics, 48, 245–252.CrossRef
go back to reference Gusev, A., Lee, S. H., Trynka, G., Finucane, H., Vilhjalmsson, B. J., Xu, H., et al. (2014). Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. American Journal of Human Genetics, 95, 535–552.CrossRef Gusev, A., Lee, S. H., Trynka, G., Finucane, H., Vilhjalmsson, B. J., Xu, H., et al. (2014). Partitioning heritability of regulatory and cell-type-specific variants across 11 common diseases. American Journal of Human Genetics, 95, 535–552.CrossRef
go back to reference Han, W., Zhang, M., Feng, X., Gong, G., Peng, K., & Zhang, D. (2018). Genetic influences on creativity: An exploration of convergent and divergent thinking. PeerJ, 6, e5403.CrossRef Han, W., Zhang, M., Feng, X., Gong, G., Peng, K., & Zhang, D. (2018). Genetic influences on creativity: An exploration of convergent and divergent thinking. PeerJ, 6, e5403.CrossRef
go back to reference Harrison, P. J., & Law, A. J. (2006). Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biological Psychiatry, 60, 132–140.CrossRef Harrison, P. J., & Law, A. J. (2006). Neuregulin 1 and schizophrenia: Genetics, gene expression, and neurobiology. Biological Psychiatry, 60, 132–140.CrossRef
go back to reference Heinz, A., Goldman, D., Jones, D. W., Palmour, R., Hommer, D., Gorey, J. G., et al. (2000). Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology, 22, 133–139.CrossRef Heinz, A., Goldman, D., Jones, D. W., Palmour, R., Hommer, D., Gorey, J. G., et al. (2000). Genotype influences in vivo dopamine transporter availability in human striatum. Neuropsychopharmacology, 22, 133–139.CrossRef
go back to reference Insel, T. R. (2010). The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 165, 768–779.CrossRef Insel, T. R. (2010). The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron, 165, 768–779.CrossRef
go back to reference Jaber, M., Jones, S., Giros, B., & Caron, M. G. (1997). The dopamine transporter: A crucial component regulating dopamine transmission. Movement Disorders, 12, 629–633.CrossRef Jaber, M., Jones, S., Giros, B., & Caron, M. G. (1997). The dopamine transporter: A crucial component regulating dopamine transmission. Movement Disorders, 12, 629–633.CrossRef
go back to reference Jiang, W., Shang, S., & Su, Y. (2015). Genetic influences on insight problem solving: The role of catechol-O-methyltransferase (COMT) gene polymorphisms. Frontiers in Psychology, 6, 1569.CrossRef Jiang, W., Shang, S., & Su, Y. (2015). Genetic influences on insight problem solving: The role of catechol-O-methyltransferase (COMT) gene polymorphisms. Frontiers in Psychology, 6, 1569.CrossRef
go back to reference Karabay, A., Yu, W. Q., Solowska, J. M., Baird, D. H., & Baas, P. W. (2004). Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. Journal of Neuroscience, 24, 5778–5788.CrossRef Karabay, A., Yu, W. Q., Solowska, J. M., Baird, D. H., & Baas, P. W. (2004). Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. Journal of Neuroscience, 24, 5778–5788.CrossRef
go back to reference Kaufman, J. C., & Baer, J. (2004). The amusement park theoretical (APT) model of creativity. Korean Journal of Thinking and Problem Solving, 14, 15–26. Kaufman, J. C., & Baer, J. (2004). The amusement park theoretical (APT) model of creativity. Korean Journal of Thinking and Problem Solving, 14, 15–26.
go back to reference Keri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20, 1070–1073.CrossRef Keri, S. (2009). Genes for psychosis and creativity: A promoter polymorphism of the neuregulin 1 gene is related to creativity in people with high intellectual achievement. Psychological Science, 20, 1070–1073.CrossRef
go back to reference Knickmeyer, R. C., Wang, J., Zhu, H., Geng, X., Woolson, S., Hamer, R. M., et al. (2014). Common variants in psychiatric risk genes predict brain structure at birth. Cerebral Cortex, 24, 1230–1246.CrossRef Knickmeyer, R. C., Wang, J., Zhu, H., Geng, X., Woolson, S., Hamer, R. M., et al. (2014). Common variants in psychiatric risk genes predict brain structure at birth. Cerebral Cortex, 24, 1230–1246.CrossRef
go back to reference Koshimizu, T. A., Nakamura, K., Egashira, N., Hiroyama, M., Nonoguchi, H., & Tanoue, A. (2012). Vasopressin V1a and V1b receptors: From molecules to physiological systems. Physiological Reviews, 92, 1813–1864.CrossRef Koshimizu, T. A., Nakamura, K., Egashira, N., Hiroyama, M., Nonoguchi, H., & Tanoue, A. (2012). Vasopressin V1a and V1b receptors: From molecules to physiological systems. Physiological Reviews, 92, 1813–1864.CrossRef
go back to reference Lappalainen, T., Sammeth, M., Friedlander, M. R., t Hoen, P. A., Monlong, J., Rivas, M. A., et al. (2013). Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511.CrossRef Lappalainen, T., Sammeth, M., Friedlander, M. R., t Hoen, P. A., Monlong, J., Rivas, M. A., et al. (2013). Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511.CrossRef
go back to reference Law, A. J., Lipska, B. K., Weickert, C. S., Hyde, T. M., Straub, R. E., Hashimoto, R., et al. (2006). Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 6747–6752.CrossRef Law, A. J., Lipska, B. K., Weickert, C. S., Hyde, T. M., Straub, R. E., Hashimoto, R., et al. (2006). Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5′ SNPs associated with the disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 6747–6752.CrossRef
go back to reference Lee, H. H., Jan, L. Y., & Jan, Y. N. (2009). Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 106, 6363–6368.CrossRef Lee, H. H., Jan, L. Y., & Jan, Y. N. (2009). Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 106, 6363–6368.CrossRef
go back to reference Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., et al. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 1112–1121.CrossRef Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., et al. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50, 1112–1121.CrossRef
go back to reference Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.CrossRef Lesch, K. P., Bengel, D., Heils, A., Sabol, S. Z., Greenberg, B. D., Petri, S., et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science, 274, 1527–1531.CrossRef
go back to reference Li, H., Zhang, C., Cai, X., Wang, L., Luo, F., Ma, Y., et al. (2020). Genome-wide association study of creativity reveals genetic overlap with psychiatric disorders, risk tolerance, and risky behaviors. Schizophrenia Bulletin, 46, 1317–1326. Li, H., Zhang, C., Cai, X., Wang, L., Luo, F., Ma, Y., et al. (2020). Genome-wide association study of creativity reveals genetic overlap with psychiatric disorders, risk tolerance, and risky behaviors. Schizophrenia Bulletin, 46, 1317–1326.
go back to reference Li, Y. I., van de Geijn, B., Raj, A., Knowles, D. A., Petti, A. A., Golan, D., et al. (2016). RNA splicing is a primary link between genetic variation and disease. Science, 352, 600–604.CrossRef Li, Y. I., van de Geijn, B., Raj, A., Knowles, D. A., Petti, A. A., Golan, D., et al. (2016). RNA splicing is a primary link between genetic variation and disease. Science, 352, 600–604.CrossRef
go back to reference Liu, Z., Zhang, J., Xie, X., Rolls, E. T., Sun, J., Zhang, K., et al. (2018). Neural and genetic determinants of creativity. NeuroImage, 174, 164–176.CrossRef Liu, Z., Zhang, J., Xie, X., Rolls, E. T., Sun, J., Zhang, K., et al. (2018). Neural and genetic determinants of creativity. NeuroImage, 174, 164–176.CrossRef
go back to reference Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753.CrossRef Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753.CrossRef
go back to reference Mayer, R. E. (2005). The role of domain knowledge in creative problem solving. In J. C. Kaufman & J. Baer (Eds.), Creativity and reason in cognitive development (pp. 145–158). Cambridge University Press. Mayer, R. E. (2005). The role of domain knowledge in creative problem solving. In J. C. Kaufman & J. Baer (Eds.), Creativity and reason in cognitive development (pp. 145–158). Cambridge University Press.
go back to reference Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502.CrossRef Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502.CrossRef
go back to reference Meneses, A., & Hong, E. (1995). Effect of fluoxetine on learning and memory involves multiple 5-HT systems. Pharmacology Biochemistry and Behavior, 52, 341–346.CrossRef Meneses, A., & Hong, E. (1995). Effect of fluoxetine on learning and memory involves multiple 5-HT systems. Pharmacology Biochemistry and Behavior, 52, 341–346.CrossRef
go back to reference Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12, 524–538.CrossRef Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12, 524–538.CrossRef
go back to reference Mills, F., Bartlett, T. E., Dissing-Olesen, L., Wisniewska, M. B., Kuznicki, J., Macvicar, B. A., et al. (2014). Cognitive flexibility and long-term depression (LTD) are impaired following beta-catenin stabilization in vivo. Proceedings of the National Academy of Sciences of the United States of America, 111, 8631–8636.CrossRef Mills, F., Bartlett, T. E., Dissing-Olesen, L., Wisniewska, M. B., Kuznicki, J., Macvicar, B. A., et al. (2014). Cognitive flexibility and long-term depression (LTD) are impaired following beta-catenin stabilization in vivo. Proceedings of the National Academy of Sciences of the United States of America, 111, 8631–8636.CrossRef
go back to reference Moore, A. A., Sawyers, C., Adkins, D. E., & Docherty, A. R. (2018). Opportunities for an enhanced integration of neuroscience and genomics. Brain Imaging and Behavior, 12, 1211–1219.CrossRef Moore, A. A., Sawyers, C., Adkins, D. E., & Docherty, A. R. (2018). Opportunities for an enhanced integration of neuroscience and genomics. Brain Imaging and Behavior, 12, 1211–1219.CrossRef
go back to reference Munafo, M. R., Matheson, I. J., & Flint, J. (2007). Association of the DRD2 gene Taq1A polymorphism and alcoholism: A meta-analysis of case-control studies and evidence of publication bias. Molecular Psychiatry, 12, 454–461.CrossRef Munafo, M. R., Matheson, I. J., & Flint, J. (2007). Association of the DRD2 gene Taq1A polymorphism and alcoholism: A meta-analysis of case-control studies and evidence of publication bias. Molecular Psychiatry, 12, 454–461.CrossRef
go back to reference Murphy, M., Runco, M. A., Acar, S., & Reiter-Palmon, R. (2013). Reanalysis of genetic data and rethinking dopamine’s relationship with creativity. Creativity Research Journal, 21, 147–148.CrossRef Murphy, M., Runco, M. A., Acar, S., & Reiter-Palmon, R. (2013). Reanalysis of genetic data and rethinking dopamine’s relationship with creativity. Creativity Research Journal, 21, 147–148.CrossRef
go back to reference Nica, A. C., Montgomery, S. B., Dimas, A. S., Stranger, B. E., Beazley, C., Barroso, I., et al. (2010). Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genetics, 6, e1000895.CrossRef Nica, A. C., Montgomery, S. B., Dimas, A. S., Stranger, B. E., Beazley, C., Barroso, I., et al. (2010). Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genetics, 6, e1000895.CrossRef
go back to reference Nichols, R. C. (1978). Twin studies of ability, personality and interests. Homo, 29, 158–173. Nichols, R. C. (1978). Twin studies of ability, personality and interests. Homo, 29, 158–173.
go back to reference Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E., & Cox, N. J. (2010). Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genetics, 6, e1000888.CrossRef Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E., & Cox, N. J. (2010). Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genetics, 6, e1000888.CrossRef
go back to reference Nijstad, B. A., De Dreu, C. K. W., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21, 34–77.CrossRef Nijstad, B. A., De Dreu, C. K. W., Rietzschel, E. F., & Baas, M. (2010). The dual pathway to creativity model: Creative ideation as a function of flexibility and persistence. European Review of Social Psychology, 21, 34–77.CrossRef
go back to reference Oikkonen, J., Kuusi, T., Peltonen, P., Raijas, P., Ukkola-Vuoti, L., Karma, K., et al. (2016). Creative activities in music: A genome-wide linkage analysis. PLoS One, 11, e0148679.CrossRef Oikkonen, J., Kuusi, T., Peltonen, P., Raijas, P., Ukkola-Vuoti, L., Karma, K., et al. (2016). Creative activities in music: A genome-wide linkage analysis. PLoS One, 11, e0148679.CrossRef
go back to reference Osinsky, R., Schmitz, A., Alexander, N., Kuepper, Y., Kozyra, E., & Hennig, J. (2009). TPH2 gene variation and conflict processing in a cognitive and an emotional Stroop task. Behavioural Brain Research, 198, 404–410.CrossRef Osinsky, R., Schmitz, A., Alexander, N., Kuepper, Y., Kozyra, E., & Hennig, J. (2009). TPH2 gene variation and conflict processing in a cognitive and an emotional Stroop task. Behavioural Brain Research, 198, 404–410.CrossRef
go back to reference Piffer, D., & Hur, Y.-M. (2014). Heritability of creative achievement. Creativity Research Journal, 26, 151–157.CrossRef Piffer, D., & Hur, Y.-M. (2014). Heritability of creative achievement. Creativity Research Journal, 26, 151–157.CrossRef
go back to reference Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., et al. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953–955.CrossRef Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., et al. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953–955.CrossRef
go back to reference Qin, Z., Ren, F., Xu, X., Ren, Y., Li, H., Wang, Y., et al. (2009). ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Molecular and Cellular Biology, 29, 3633–3643.CrossRef Qin, Z., Ren, F., Xu, X., Ren, Y., Li, H., Wang, Y., et al. (2009). ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription. Molecular and Cellular Biology, 29, 3633–3643.CrossRef
go back to reference Ren, Z., Yang, W., & Qiu, J. (2019). Neural and genetic mechanisms of creative potential. Current Opinion in Behavioral Sciences, 27, 40–46.CrossRef Ren, Z., Yang, W., & Qiu, J. (2019). Neural and genetic mechanisms of creative potential. Current Opinion in Behavioral Sciences, 27, 40–46.CrossRef
go back to reference Reuter, M., Esslinger, C., Montag, C., Lis, S., Gallhofer, B., & Kirsch, P. (2008). A functional variant of the tryptophan hydroxylase 2 gene impacts working memory: A genetic imaging study. Biological Psychology, 79, 111–117.CrossRef Reuter, M., Esslinger, C., Montag, C., Lis, S., Gallhofer, B., & Kirsch, P. (2008). A functional variant of the tryptophan hydroxylase 2 gene impacts working memory: A genetic imaging study. Biological Psychology, 79, 111–117.CrossRef
go back to reference Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069, 190–197.CrossRef Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069, 190–197.CrossRef
go back to reference Robinson, M. R., Wray, N. R., & Visscher, P. M. (2014). Explaining additional genetic variation in complex traits. Trends in Genetics, 30, 124–132.CrossRef Robinson, M. R., Wray, N. R., & Visscher, P. M. (2014). Explaining additional genetic variation in complex traits. Trends in Genetics, 30, 124–132.CrossRef
go back to reference Runco, M. A. (2010). Divergent thinking, creativity, and ideation. In J. Kaufman & R. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 413–446). Cambridge University Press.CrossRef Runco, M. A. (2010). Divergent thinking, creativity, and ideation. In J. Kaufman & R. Sternberg (Eds.), The Cambridge handbook of creativity (pp. 413–446). Cambridge University Press.CrossRef
go back to reference Runco, M. A., Noble, E. P., Reiter-Palmon, R., Acar, S., Ritchie, T., & Yurkovich, J. M. (2011). The genetic basis of creativity and ideational fluency. Creativity Research Journal, 23, 376–380.CrossRef Runco, M. A., Noble, E. P., Reiter-Palmon, R., Acar, S., Ritchie, T., & Yurkovich, J. M. (2011). The genetic basis of creativity and ideational fluency. Creativity Research Journal, 23, 376–380.CrossRef
go back to reference Ruocco, A. C., Rodrigo, A. H., Carcone, D., McMain, S., Jacobs, G., & Kennedy, J. L. (2016). Tryptophan hydroxylase 1 gene polymorphisms alter prefrontal cortex activation during response inhibition. Neuropsychology, 30, 18–27.CrossRef Ruocco, A. C., Rodrigo, A. H., Carcone, D., McMain, S., Jacobs, G., & Kennedy, J. L. (2016). Tryptophan hydroxylase 1 gene polymorphisms alter prefrontal cortex activation during response inhibition. Neuropsychology, 30, 18–27.CrossRef
go back to reference Si, S., Su, Y. K., Zhang, S., & Zhang, J. H. (2020). Genetic susceptibility to parenting style: DRD2 and COMT influence creativity. NeuroImage, 213, 116681.CrossRef Si, S., Su, Y. K., Zhang, S., & Zhang, J. H. (2020). Genetic susceptibility to parenting style: DRD2 and COMT influence creativity. NeuroImage, 213, 116681.CrossRef
go back to reference Si, S., Zhang, S., Yu, Q., & Zhang, J. (2018). The interaction of DRD2 and parenting style in predicting creativity. Thinking Skills & Creativity, 27, 64–77.CrossRef Si, S., Zhang, S., Yu, Q., & Zhang, J. (2018). The interaction of DRD2 and parenting style in predicting creativity. Thinking Skills & Creativity, 27, 64–77.CrossRef
go back to reference Silvia, P. J., Kaufman, J. C., & Pretz, J. E. (2009). Is creativity domain-specific? Latent class models of creative accomplishments and creative self-descriptions. Psychology of Aesthetics, Creativity, and the Arts, 3, 139–148.CrossRef Silvia, P. J., Kaufman, J. C., & Pretz, J. E. (2009). Is creativity domain-specific? Latent class models of creative accomplishments and creative self-descriptions. Psychology of Aesthetics, Creativity, and the Arts, 3, 139–148.CrossRef
go back to reference Sorensen, J. B., Nagy, G., Varoqueaux, F., Nehring, R. B., Brose, N., Wilson, M. C., et al. (2003). Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell, 114, 75–86.CrossRef Sorensen, J. B., Nagy, G., Varoqueaux, F., Nehring, R. B., Brose, N., Wilson, M. C., et al. (2003). Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell, 114, 75–86.CrossRef
go back to reference Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., et al. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 83–87.CrossRef Stefansson, H., Sarginson, J., Kong, A., Yates, P., Steinthorsdottir, V., Gudfinnsson, E., et al. (2003). Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. American Journal of Human Genetics, 72, 83–87.CrossRef
go back to reference Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877–892.CrossRef Stefansson, H., Sigurdsson, E., Steinthorsdottir, V., Bjornsdottir, S., Sigmundsson, T., Ghosh, S., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877–892.CrossRef
go back to reference Strobel, A., Debener, S., Anacker, K., Muller, J., Lesch, K. P., & Brocke, B. (2004). Dopamine D4 receptor exon III genotype influence on the auditory evoked novelty P3. NeuroReport, 15, 2411–2415.CrossRef Strobel, A., Debener, S., Anacker, K., Muller, J., Lesch, K. P., & Brocke, B. (2004). Dopamine D4 receptor exon III genotype influence on the auditory evoked novelty P3. NeuroReport, 15, 2411–2415.CrossRef
go back to reference Strobel, A., Dreisbach, G., Müller, J., Goschke, T., Brocke, B., & Lesch, K. P. (2007). Genetic variation of serotonin function and cognitive control. Journal of Cognitive Neuroscience, 19, 1923–1931.CrossRef Strobel, A., Dreisbach, G., Müller, J., Goschke, T., Brocke, B., & Lesch, K. P. (2007). Genetic variation of serotonin function and cognitive control. Journal of Cognitive Neuroscience, 19, 1923–1931.CrossRef
go back to reference Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., et al. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578–585.CrossRef Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., et al. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. NeuroImage, 51, 578–585.CrossRef
go back to reference Takeuchi, H., Tomita, H., Taki, Y., Kikuchi, Y., Ono, C., Yu, Z., et al. (2015). The associations among the dopamine D2 receptor Taq1, emotional intelligence, creative potential measured by divergent thinking, and motivational state and these associations’ sex differences. Frontiers in Psychology, 6, 912.CrossRef Takeuchi, H., Tomita, H., Taki, Y., Kikuchi, Y., Ono, C., Yu, Z., et al. (2015). The associations among the dopamine D2 receptor Taq1, emotional intelligence, creative potential measured by divergent thinking, and motivational state and these associations’ sex differences. Frontiers in Psychology, 6, 912.CrossRef
go back to reference Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., et al. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647–656.CrossRef Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., et al. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15, 647–656.CrossRef
go back to reference Toyo-Oka, K., Sasaki, S., Yano, Y., Mori, D., Kobayashi, T., Toyoshima, Y. Y., et al. (2005). Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Human Molecular Genetics, 14, 3113–3128.CrossRef Toyo-Oka, K., Sasaki, S., Yano, Y., Mori, D., Kobayashi, T., Toyoshima, Y. Y., et al. (2005). Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration. Human Molecular Genetics, 14, 3113–3128.CrossRef
go back to reference Ukkola, L. T., Kanduri, C., Oikkonen, J., Buck, G., Blancher, C., Raijas, P., et al. (2013). Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS One, 8, e56356.CrossRef Ukkola, L. T., Kanduri, C., Oikkonen, J., Buck, G., Blancher, C., Raijas, P., et al. (2013). Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music. PLoS One, 8, e56356.CrossRef
go back to reference Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K., & Jarvela, I. (2009). Musical aptitude is associated with AVPR1A-haplotypes. PLoS One, 4, e5534.CrossRef Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K., & Jarvela, I. (2009). Musical aptitude is associated with AVPR1A-haplotypes. PLoS One, 4, e5534.CrossRef
go back to reference van de Giessen, E., de Win, M. M., Tanck, M. W., van den Brink, W., Baas, F., & Booij, J. (2009). Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. Journal of Nuclear Medicine, 50, 45–52.CrossRef van de Giessen, E., de Win, M. M., Tanck, M. W., van den Brink, W., Baas, F., & Booij, J. (2009). Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. Journal of Nuclear Medicine, 50, 45–52.CrossRef
go back to reference Velázquez, J. A., Segal, N. L., & Horwitz, B. N. (2015). Genetic and environmental influences on applied creativity: A reared-apart twin study. Personality and Individual Differences, 75, 141–146.CrossRef Velázquez, J. A., Segal, N. L., & Horwitz, B. N. (2015). Genetic and environmental influences on applied creativity: A reared-apart twin study. Personality and Individual Differences, 75, 141–146.CrossRef
go back to reference Volf, N. V., Kulikov, A. V., Bortsov, C. U., & Popova, N. K. (2009). Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neuroscience Letters, 463, 154–157.CrossRef Volf, N. V., Kulikov, A. V., Bortsov, C. U., & Popova, N. K. (2009). Association of verbal and figural creative achievement with polymorphism in the human serotonin transporter gene. Neuroscience Letters, 463, 154–157.CrossRef
go back to reference Wang, D., Guo, T., Guo, Q., Zhang, S., Zhang, J., Luo, J., et al. (2019). The association between schizophrenia risk variants and creativity in healthy Han Chinese subjects. Frontiers in Psychology, 10, 2218.CrossRef Wang, D., Guo, T., Guo, Q., Zhang, S., Zhang, J., Luo, J., et al. (2019). The association between schizophrenia risk variants and creativity in healthy Han Chinese subjects. Frontiers in Psychology, 10, 2218.CrossRef
go back to reference Wang, Y., & Tang, B. L. (2006). SNAREs in neurons-beyond synaptic vesicle exocytosis (Review). Molecular Membrane Biology, 23, 377–384.CrossRef Wang, Y., & Tang, B. L. (2006). SNAREs in neurons-beyond synaptic vesicle exocytosis (Review). Molecular Membrane Biology, 23, 377–384.CrossRef
go back to reference Westra, H. J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., et al. (2013). Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature Genetics, 45, 1238–1243.CrossRef Westra, H. J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., et al. (2013). Systematic identification of trans eQTLs as putative drivers of known disease associations. Nature Genetics, 45, 1238–1243.CrossRef
go back to reference Williams, G. V., Rao, S. G., & Goldman-Rakic, P. S. (2002). The physiological role of 5-HT2A receptors in working memory. Journal of Neuroscience, 22, 2843–2854.CrossRef Williams, G. V., Rao, S. G., & Goldman-Rakic, P. S. (2002). The physiological role of 5-HT2A receptors in working memory. Journal of Neuroscience, 22, 2843–2854.CrossRef
go back to reference Wong, S. T., Athos, J., Figueroa, X. A., Pineda, V. V., Schaefer, M. L., Chavkin, C. C., et al. (1999). Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron, 23, 787–798.CrossRef Wong, S. T., Athos, J., Figueroa, X. A., Pineda, V. V., Schaefer, M. L., Chavkin, C. C., et al. (1999). Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP. Neuron, 23, 787–798.CrossRef
go back to reference Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., et al. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 2703–2718.CrossRef Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., et al. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36, 2703–2718.CrossRef
go back to reference Yang, X. L., Zhang, J. H., & Zhang, S. (2019). No association of COMT with insight problem solving in Chinese college students. PeerJ, 7, e6755.CrossRef Yang, X. L., Zhang, J. H., & Zhang, S. (2019). No association of COMT with insight problem solving in Chinese college students. PeerJ, 7, e6755.CrossRef
go back to reference Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the creative mind: Individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS One, 11, e0146768.CrossRef Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the creative mind: Individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS One, 11, e0146768.CrossRef
go back to reference Zhang, J. H., Han, X., Si, S., & Zhang, S. (2018). The interaction of TPH1 A779C polymorphism and maternal authoritarianism on creative potential. Frontiers in Psychology, 9, 2106.CrossRef Zhang, J. H., Han, X., Si, S., & Zhang, S. (2018). The interaction of TPH1 A779C polymorphism and maternal authoritarianism on creative potential. Frontiers in Psychology, 9, 2106.CrossRef
go back to reference Zhang, J. H., & Zhang, S. (2020). The association of TPH genes with creative insight performance. Psychology of Aesthetics Creativity and the Arts, 14, 87–93.CrossRef Zhang, J. H., & Zhang, S. (2020). The association of TPH genes with creative insight performance. Psychology of Aesthetics Creativity and the Arts, 14, 87–93.CrossRef
go back to reference Zhang, S., Yang, X., Si, S., & Zhang, J. (2021). The neurobiological basis of divergent thinking: Insight from gene co-expression network-based analysis. NeuroImage, 245, 118762.CrossRef Zhang, S., Yang, X., Si, S., & Zhang, J. (2021). The neurobiological basis of divergent thinking: Insight from gene co-expression network-based analysis. NeuroImage, 245, 118762.CrossRef
go back to reference Zhang, S., & Zhang, J. H. (2017). The association of TPH genes with creative potential. Psychology of Aesthetics, Creativity, and the Arts, 11, 2–9.CrossRef Zhang, S., & Zhang, J. H. (2017). The association of TPH genes with creative potential. Psychology of Aesthetics, Creativity, and the Arts, 11, 2–9.CrossRef
go back to reference Zhang, S., Zhang, M. Z., & Zhang, J. H. (2014). Association of COMT and COMT-DRD2 interaction with creative potential. Frontiers in Human Neuroscience, 8, 216.CrossRef Zhang, S., Zhang, M. Z., & Zhang, J. H. (2014). Association of COMT and COMT-DRD2 interaction with creative potential. Frontiers in Human Neuroscience, 8, 216.CrossRef
go back to reference Zhang, S., Zhang, M. Z., & Zhang, J. H. (2014). An exploratory study on DRD2 and creative potential. Creativity Research Journal, 26, 115–123.CrossRef Zhang, S., Zhang, M. Z., & Zhang, J. H. (2014). An exploratory study on DRD2 and creative potential. Creativity Research Journal, 26, 115–123.CrossRef
go back to reference Zhang, S., & Zhang, J. H. (2016). The association of DRD2 with insight problem solving. Frontiers in Psychology, 7, 1865. Zhang, S., & Zhang, J. H. (2016). The association of DRD2 with insight problem solving. Frontiers in Psychology, 7, 1865.
go back to reference Zhang, W., Cai, S., Huang, K., Lv, Y., Kang, Y., Wang, Q., et al. (2019). Association between schizophrenia risk allele dosage of rs6994992 and whole-brain structural and functional characteristics. Psychiatry Research: Neuroimaging, 294, 110956.CrossRef Zhang, W., Cai, S., Huang, K., Lv, Y., Kang, Y., Wang, Q., et al. (2019). Association between schizophrenia risk allele dosage of rs6994992 and whole-brain structural and functional characteristics. Psychiatry Research: Neuroimaging, 294, 110956.CrossRef
go back to reference Zhang, X., Joehanes, R., Chen, B. H., Huan, T., Ying, S., Munson, P. J., et al. (2015). Identification of common genetic variants controlling transcript isoform variation in human whole blood. Nature Genetics, 47, 345–352.CrossRef Zhang, X., Joehanes, R., Chen, B. H., Huan, T., Ying, S., Munson, P. J., et al. (2015). Identification of common genetic variants controlling transcript isoform variation in human whole blood. Nature Genetics, 47, 345–352.CrossRef
go back to reference Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M. R., Powell, J. E., et al. (2016). Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics, 48, 481–487.CrossRef Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M. R., Powell, J. E., et al. (2016). Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nature Genetics, 48, 481–487.CrossRef
go back to reference Zill, P., Büttner, A., Eisenmenger, W., Möller, H. J., Ackenheil, M., & Bondy, B. (2007). Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: A post-mortem study. Journal of Psychiatry Research, 41, 168–173.CrossRef Zill, P., Büttner, A., Eisenmenger, W., Möller, H. J., Ackenheil, M., & Bondy, B. (2007). Analysis of tryptophan hydroxylase I and II mRNA expression in the human brain: A post-mortem study. Journal of Psychiatry Research, 41, 168–173.CrossRef
Metagegevens
Titel
The molecular genetic basis of creativity: a mini review and perspectives
Auteurs
Shun Zhang
Xiaolei Yang
Bozheng Zhang
Jinghuan Zhang
Publicatiedatum
26-02-2022
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 1/2023
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-022-01649-z

Andere artikelen Uitgave 1/2023

Psychological Research 1/2023 Naar de uitgave