Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2018

19-01-2017 | Original Article

The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary

Auteurs: Ruojing Zhou, Weimin Mou

Gepubliceerd in: Psychological Research | Uitgave 3/2018

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Previous research (Zhou, Mou, Journal of Experimental Psychology: Learning, Memory and Cognition 42(8):1316–1323, 2016) showed that learning individual locations relative to a single landmark, compared to learning relative to a boundary, led to more accurate inferences of inter-object spatial relations (cognitive mapping of multiple locations). Following our past findings, the current study investigated whether the larger number of reference points provided by a homogeneous circular boundary, as well as less accessible knowledge of direct spatial relations among the multiple reference points, would lead to less effective cognitive mapping relative to the boundary. Accordingly, we manipulated (a) the number of primary reference points (one segment drawn from a circular boundary, four such segments, vs. the complete boundary) available when participants were localizing four objects sequentially (Experiment 1) and (b) the extendedness of each of the four segments (Experiment 2). The results showed that cognitive mapping was the least accurate in the whole boundary condition. However, expanding each of the four segments did not affect the accuracy of cognitive mapping until the four were connected to form a continuous boundary. These findings indicate that when encoding locations relative to a homogeneous boundary, participants segmented the boundary into differentiated pieces and subsequently chose the most informative local part (i.e., the segment closest in distance to one location) as the primary reference point for a particular location. During this process, direct spatial relations among the reference points were likely not attended to. These findings suggest that people might encode and represent bounded space in a fragmented fashion when localizing within a homogeneous boundary.
Voetnoten
1
We thank an anonymous reviewer for suggesting this alternative.
 
Literatuur
go back to reference Aguire, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cotex, 6, 823–829.CrossRef Aguire, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cotex, 6, 823–829.CrossRef
go back to reference Anderson, M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language, 49, 415–445.CrossRef Anderson, M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language, 49, 415–445.CrossRef
go back to reference Barry, C., & Burgess, N. (2007). Learning in a geometric model of place cell firing. Hippocampus, 17, 786–800.CrossRefPubMed Barry, C., & Burgess, N. (2007). Learning in a geometric model of place cell firing. Hippocampus, 17, 786–800.CrossRefPubMed
go back to reference Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O’Keefe, J., Jeffery, H., & Burgess, N. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(1–2), 71–97.PubMedPubMedCentral Barry, C., Lever, C., Hayman, R., Hartley, T., Burton, S., O’Keefe, J., Jeffery, H., & Burgess, N. (2006). The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences, 17(1–2), 71–97.PubMedPubMedCentral
go back to reference Bennett, A. T. D. (1996). Do animal have cognitive maps. The Journal of Experimental Biology, 199, 219–224.PubMed Bennett, A. T. D. (1996). Do animal have cognitive maps. The Journal of Experimental Biology, 199, 219–224.PubMed
go back to reference Bird, C. M., Capponi, C., King, J. A., Doeller, C. R., & Burgess, N. (2010). Establishing the boundaries: the hippocampal contribution to imagining scenes. The Journal of Neuroscience, 30(35), 11688–11695.CrossRefPubMed Bird, C. M., Capponi, C., King, J. A., Doeller, C. R., & Burgess, N. (2010). Establishing the boundaries: the hippocampal contribution to imagining scenes. The Journal of Neuroscience, 30(35), 11688–11695.CrossRefPubMed
go back to reference Bohbot, V. D., Kaline, M., Stepankova, K., Spackova, N., Petrides, M., & Nadel, L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia, 36(11), 1217–1238.CrossRefPubMed Bohbot, V. D., Kaline, M., Stepankova, K., Spackova, N., Petrides, M., & Nadel, L. (1998). Spatial memory deficits in patients with lesions to the right hippocampus and to the right parahippocampal cortex. Neuropsychologia, 36(11), 1217–1238.CrossRefPubMed
go back to reference Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 77–97.CrossRefPubMed Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 77–97.CrossRefPubMed
go back to reference Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149–178.CrossRefPubMed Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23, 149–178.CrossRefPubMed
go back to reference Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12(1), 1–23.CrossRef Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review, 12(1), 1–23.CrossRef
go back to reference Committeri, G., Galati, G., Paradis, A. L., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Journal of Cognitive Neuroscience, 16, 1517–1535.CrossRefPubMed Committeri, G., Galati, G., Paradis, A. L., Pizzamiglio, L., Berthoz, A., & LeBihan, D. (2004). Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location. Journal of Cognitive Neuroscience, 16, 1517–1535.CrossRefPubMed
go back to reference Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5909–5914.CrossRefPubMedPubMedCentral Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5909–5914.CrossRefPubMedPubMedCentral
go back to reference Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5915–5920.CrossRefPubMedPubMedCentral Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5915–5920.CrossRefPubMedPubMedCentral
go back to reference Ekstrom, A. D., Arnold, A., & Iaria, G. (2014). A critical review of the allocentric spatial representation and ist neural underpinnings: toward a network-based perspective. Frontiers in Human Neuroscience, 8, 803.CrossRefPubMedPubMedCentral Ekstrom, A. D., Arnold, A., & Iaria, G. (2014). A critical review of the allocentric spatial representation and ist neural underpinnings: toward a network-based perspective. Frontiers in Human Neuroscience, 8, 803.CrossRefPubMedPubMedCentral
go back to reference Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–188.CrossRefPubMed Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425, 184–188.CrossRefPubMed
go back to reference Gouteux, S., & Spelke, E. S. (2001). Children’s use of geometry and landmarks to reorient in an open space. Cognition, 81, 119–148.CrossRefPubMed Gouteux, S., & Spelke, E. S. (2001). Children’s use of geometry and landmarks to reorient in an open space. Cognition, 81, 119–148.CrossRefPubMed
go back to reference Hartley, T., Burgess, N., Lever, C., Cacucci, F., & O’Keefe, J. (2000). Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus, 10, 369–379.CrossRefPubMed Hartley, T., Burgess, N., Lever, C., Cacucci, F., & O’Keefe, J. (2000). Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus, 10, 369–379.CrossRefPubMed
go back to reference Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.CrossRefPubMed Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.CrossRefPubMed
go back to reference Hartley, T., Trinkler, I., & Burgess, N. (2004). Geometric determinants of human spatial memory. Cognition, 94(1), 39–75.CrossRefPubMed Hartley, T., Trinkler, I., & Burgess, N. (2004). Geometric determinants of human spatial memory. Cognition, 94(1), 39–75.CrossRefPubMed
go back to reference Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370(6484), 57–59.CrossRefPubMed Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370(6484), 57–59.CrossRefPubMed
go back to reference Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. The Journal of Neuroscience, 23(13), 5945–5952.CrossRefPubMed Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. The Journal of Neuroscience, 23(13), 5945–5952.CrossRefPubMed
go back to reference Levine, M., Jankovic, I. N., & Palij, M. (1982). Principles of spatial problem solving. Journal of Experimental Pscyhology: General, 111(2), 157–175.CrossRef Levine, M., Jankovic, I. N., & Palij, M. (1982). Principles of spatial problem solving. Journal of Experimental Pscyhology: General, 111(2), 157–175.CrossRef
go back to reference Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G., & O’Keefe, J. (1998a). Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive Neuroscience, 10(1), 61–76. Maguire, E. A., Frith, C. D., Burgess, N., Donnett, J. G., & O’Keefe, J. (1998a). Knowing where things are: parahippocampal involvement in encoding object locations in virtual large-scale space. Journal of Cognitive Neuroscience, 10(1), 61–76.
go back to reference Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. The Journal of Neuroscience, 31(43), 15264–15268.CrossRefPubMedPubMedCentral Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. The Journal of Neuroscience, 31(43), 15264–15268.CrossRefPubMedPubMedCentral
go back to reference McDonald, R. J., & White, N. M. (1994). Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral Neural Biology, 61(3), 260–270.CrossRefPubMed McDonald, R. J., & White, N. M. (1994). Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behavioral Neural Biology, 61(3), 260–270.CrossRefPubMed
go back to reference Mou, W., & Zhou, R. (2013). Defining a Boundary in Goal Localization: Infinite Number of Points or Extended Surfaces. Journal of Experimental Psychology: Learning, Memory and Cognition, 39(4), 1115–1127. Mou, W., & Zhou, R. (2013). Defining a Boundary in Goal Localization: Infinite Number of Points or Extended Surfaces. Journal of Experimental Psychology: Learning, Memory and Cognition, 39(4), 1115–1127.
go back to reference Nadel, L. (2013). Cognitive maps. In D. Waller & L. Nadel (Eds.), Handbook of spatial cognition (pp. 155–171). Washington, DC: American Psychological Association.CrossRef Nadel, L. (2013). Cognitive maps. In D. Waller & L. Nadel (Eds.), Handbook of spatial cognition (pp. 155–171). Washington, DC: American Psychological Association.CrossRef
go back to reference O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.CrossRefPubMed O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.CrossRefPubMed
go back to reference O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford University Press.
go back to reference Zhang, H., & Ekstrom, A. D. (2013). Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Human Brain Mapping, 34, 1070–1087.CrossRefPubMed Zhang, H., & Ekstrom, A. D. (2013). Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Human Brain Mapping, 34, 1070–1087.CrossRefPubMed
go back to reference Zhou, R., & Mou, W. (2016). Superior cognitive mapping through single landmark-related learning than through boundary-related learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 42(8), 1316–1323. Zhou, R., & Mou, W. (2016). Superior cognitive mapping through single landmark-related learning than through boundary-related learning. Journal of Experimental Psychology: Learning, Memory and Cognition, 42(8), 1316–1323.
Metagegevens
Titel
The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary
Auteurs
Ruojing Zhou
Weimin Mou
Publicatiedatum
19-01-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2018
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-016-0839-1

Andere artikelen Uitgave 3/2018

Psychological Research 3/2018 Naar de uitgave