Skip to main content
Top
Gepubliceerd in: Psychological Research 5/2019

15-09-2017 | Original Article

The implicit learning of metrical and non-metrical rhythms in blind and sighted adults

Auteurs: Claudia Carrara-Augustenborg, Benjamin G. Schultz

Gepubliceerd in: Psychological Research | Uitgave 5/2019

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Forming temporal expectancies plays a crucial role in our survival as it allows us to identify the occurrence of temporal deviants that might signal potential dangers. The dynamic attending theory suggests that temporal expectancies are formed more readily for rhythms that imply a beat (i.e., metrical rhythms) compared to those that do not (i.e., nonmetrical rhythms). Moreover, metrical frameworks can be used to detect temporal deviants. Although several studies have demonstrated that congenital or early blindness correlates with modality-specific neural changes that reflect compensatory mechanisms, few have examined whether blind individuals show a learning advantage for auditory rhythms and whether learning can occur unintentionally and without awareness, that is, implicitly. We compared blind to sighted controls in their ability to implicitly learn metrical and nonmetrical auditory rhythms. We reasoned that the loss of sight in blindness might lead to improved sensitivity to rhythms and predicted that the blind learn rhythms more readily than the sighted. We further hypothesized that metrical rhythms are learned more readily than nonmetrical rhythms. Results partially confirmed our predictions; the blind group learned nonmetrical rhythms more readily than the sighted group but the blind group learned metrical rhythms less readily than the sighted group. Only the sighted group learned metrical rhythms more readily than nonmetrical rhythms. The blind group demonstrated awareness of the nonmetrical rhythms while learning was implicit for all other conditions. Findings suggest that improved deviant-sensitivity might have provided the blind group a learning advantage for nonmetrical rhythms. Future research could explore the plastic changes that affect deviance-detection and stimulus-specific adaptation in blindness.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Ayala, Y. A., & Malmierca, M. S. (2013). Stimulus-specific adaptation and deviance detection in the inferior colliculus. Frontiers in Neural Circuits, 6, 89.PubMedPubMedCentral Ayala, Y. A., & Malmierca, M. S. (2013). Stimulus-specific adaptation and deviance detection in the inferior colliculus. Frontiers in Neural Circuits, 6, 89.PubMedPubMedCentral
go back to reference Ayala, Y. A., Pérez-González, D., & Malmierca, M. S. (2016). Stimulus-specific adaptation in the inferior colliculus: The role of excitatory, inhibitory and modulatory inputs. Biological Psychology, 116, 10–22.CrossRefPubMed Ayala, Y. A., Pérez-González, D., & Malmierca, M. S. (2016). Stimulus-specific adaptation in the inferior colliculus: The role of excitatory, inhibitory and modulatory inputs. Biological Psychology, 116, 10–22.CrossRefPubMed
go back to reference Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press. Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press.
go back to reference Baars, B. J. (2005). Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Progress in Brain Research, 150, 45–53.CrossRefPubMed Baars, B. J. (2005). Global workspace theory of consciousness: Toward a cognitive neuroscience of human experience. Progress in Brain Research, 150, 45–53.CrossRefPubMed
go back to reference Baars, B. J., & Franklin, S. (2007). An architectural model of conscious and unconscious brain functions: Global workspace theory and IDA. Neural Networks, 20, 955–961.CrossRefPubMed Baars, B. J., & Franklin, S. (2007). An architectural model of conscious and unconscious brain functions: Global workspace theory and IDA. Neural Networks, 20, 955–961.CrossRefPubMed
go back to reference Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.CrossRef Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255–278.CrossRef
go back to reference Beaulieu-Lefebvre, M., Schneider, F. C., Kupers, R., & Ptito, M. (2011). Odor perception and odor awareness in congenital blindness. Brain Research Bulletin, 84, 206–209.CrossRefPubMed Beaulieu-Lefebvre, M., Schneider, F. C., Kupers, R., & Ptito, M. (2011). Odor perception and odor awareness in congenital blindness. Brain Research Bulletin, 84, 206–209.CrossRefPubMed
go back to reference Bell, E. C., & Mino, N. M. (2013). Blind and visually impaired adult rehabilitation and employment survey: Final results. Journal of Blindness Innovation & Research, 3, 1–35. Bell, E. C., & Mino, N. M. (2013). Blind and visually impaired adult rehabilitation and employment survey: Final results. Journal of Blindness Innovation & Research, 3, 1–35.
go back to reference Boas, L. V., Muniz, L., Neto, S. D. S. C., & Gouveia, M. D. C. L. (2011). Auditory processing performance in blind people. Brazilian Journal of Otorhinolaryngology, 77, 504–509.CrossRefPubMed Boas, L. V., Muniz, L., Neto, S. D. S. C., & Gouveia, M. D. C. L. (2011). Auditory processing performance in blind people. Brazilian Journal of Otorhinolaryngology, 77, 504–509.CrossRefPubMed
go back to reference Burton, H., Agato, A., & Sinclair, R. J. (2012). Repetition learning of vibrotactile temporal sequences: An fMRI study in blind and sighted individuals. Brain Research, 1433, 69–79.CrossRefPubMed Burton, H., Agato, A., & Sinclair, R. J. (2012). Repetition learning of vibrotactile temporal sequences: An fMRI study in blind and sighted individuals. Brain Research, 1433, 69–79.CrossRefPubMed
go back to reference Byrne, R. W., & Salter, E. (1983). Distances and directions in the cognitive maps of the blind. Canadian Journal of Psychology/Revue canadienne de psychologie, 37, 293.CrossRef Byrne, R. W., & Salter, E. (1983). Distances and directions in the cognitive maps of the blind. Canadian Journal of Psychology/Revue canadienne de psychologie, 37, 293.CrossRef
go back to reference Cacciaglia, R., Escera, C., Slabu, L., Grimm, S., Sanjuán, A., Ventura-Campos, N., & Ávila, C. (2015). Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 68, 51–58.CrossRefPubMed Cacciaglia, R., Escera, C., Slabu, L., Grimm, S., Sanjuán, A., Ventura-Campos, N., & Ávila, C. (2015). Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 68, 51–58.CrossRefPubMed
go back to reference Carrara-Augustenborg C. (2013). From objective informational broadcast to subjective perceptual awareness: The development of a comprehensive model of human consciousness. Ph.D Dissertation ISBN 978-87-7611-591-3. Carrara-Augustenborg C. (2013). From objective informational broadcast to subjective perceptual awareness: The development of a comprehensive model of human consciousness. Ph.D Dissertation ISBN 978-87-7611-591-3.
go back to reference Carrara-Augustenborg, C., & Pereira, A., Jr. (2012). Brain endogenous feedback and degrees of consciousness. In A. E. Cavanna & A. Novi (Eds.), Consciousness: States, mechanisms and disorders. Hauppauge: Nova Science. Carrara-Augustenborg, C., & Pereira, A., Jr. (2012). Brain endogenous feedback and degrees of consciousness. In A. E. Cavanna & A. Novi (Eds.), Consciousness: States, mechanisms and disorders. Hauppauge: Nova Science.
go back to reference Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17, 1003–1011.CrossRefPubMed Cirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17, 1003–1011.CrossRefPubMed
go back to reference Cohen, J., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope. Behavior Research Methods, Instruments, & Computers, 25, 257–271.CrossRef Cohen, J., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope. Behavior Research Methods, Instruments, & Computers, 25, 257–271.CrossRef
go back to reference Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343.CrossRefPubMed Collignon, O., Voss, P., Lassonde, M., & Lepore, F. (2009). Cross-modal plasticity for the spatial processing of sounds in visually deprived subjects. Experimental Brain Research, 192, 343.CrossRefPubMed
go back to reference Cornella, M., Leung, S., Grimm, S., & Escera, C. (2012). Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One, 7, e43604.CrossRefPubMedPubMedCentral Cornella, M., Leung, S., Grimm, S., & Escera, C. (2012). Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One, 7, e43604.CrossRefPubMedPubMedCentral
go back to reference Custers, R., & Aarts, H. (2010). The unconscious will: How the pursuit of goals operates outside of conscious awareness. Science, 329, 47–50.CrossRefPubMed Custers, R., & Aarts, H. (2010). The unconscious will: How the pursuit of goals operates outside of conscious awareness. Science, 329, 47–50.CrossRefPubMed
go back to reference Duque, D., Malmierca, M. S., & Caspary, D. M. (2014). Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. The Journal of physiology, 592, 729–743.CrossRefPubMed Duque, D., Malmierca, M. S., & Caspary, D. M. (2014). Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anaesthetized rat. The Journal of physiology, 592, 729–743.CrossRefPubMed
go back to reference Duque, D., Pérez-González, D., Ayala, Y. A., Palmer, A. R., & Malmierca, M. S. (2012). Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. Journal of Neuroscience, 32, 17762–17774.CrossRefPubMed Duque, D., Pérez-González, D., Ayala, Y. A., Palmer, A. R., & Malmierca, M. S. (2012). Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. Journal of Neuroscience, 32, 17762–17774.CrossRefPubMed
go back to reference Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 51, 111–123.CrossRefPubMed Escera, C., & Malmierca, M. S. (2014). The auditory novelty system: An attempt to integrate human and animal research. Psychophysiology, 51, 111–123.CrossRefPubMed
go back to reference Essens, P. J., & Povel, D. J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37, 1–7.CrossRef Essens, P. J., & Povel, D. J. (1985). Metrical and nonmetrical representations of temporal patterns. Perception & Psychophysics, 37, 1–7.CrossRef
go back to reference Fieger, A., Röder, B., Teder-Sälejärvi, W., Hillyard, S. A., & Neville, H. J. (2006). Auditory spatial tuning in late-onset blindness in humans. Journal of Cognitive Neuroscience, 18, 149–157.CrossRefPubMed Fieger, A., Röder, B., Teder-Sälejärvi, W., Hillyard, S. A., & Neville, H. J. (2006). Auditory spatial tuning in late-onset blindness in humans. Journal of Cognitive Neuroscience, 18, 149–157.CrossRefPubMed
go back to reference Fozard, J. L., Vercruyssen, M., Reynolds, S. L., Hancock, P. A., & Quilter, R. E. (1994). Age differences and changes in reaction time: The Baltimore longitudinal study of aging. Journal of Gerontology, 49, P179–P189.CrossRefPubMed Fozard, J. L., Vercruyssen, M., Reynolds, S. L., Hancock, P. A., & Quilter, R. E. (1994). Age differences and changes in reaction time: The Baltimore longitudinal study of aging. Journal of Gerontology, 49, P179–P189.CrossRefPubMed
go back to reference Fu, Q., Dienes, Z., & Fu, X. (2010). Can unconscious knowledge allow control in sequence learning? Consciousness and Cognition, 19, 462–474.CrossRefPubMed Fu, Q., Dienes, Z., & Fu, X. (2010). Can unconscious knowledge allow control in sequence learning? Consciousness and Cognition, 19, 462–474.CrossRefPubMed
go back to reference Grossmann, T., & Friederici, A. D. (2012). When during development do our brains get tuned to the human voice? Social Neuroscience, 7, 369–372.CrossRefPubMed Grossmann, T., & Friederici, A. D. (2012). When during development do our brains get tuned to the human voice? Social Neuroscience, 7, 369–372.CrossRefPubMed
go back to reference Guo, X., Jiang, S., Wang, H., Zhu, L., Tang, J., Dienes, Z., & Yang, Z. (2013). Unconsciously learning task-irrelevant perceptual sequences. Consciousness and Cognition, 22, 203–211.CrossRefPubMed Guo, X., Jiang, S., Wang, H., Zhu, L., Tang, J., Dienes, Z., & Yang, Z. (2013). Unconsciously learning task-irrelevant perceptual sequences. Consciousness and Cognition, 22, 203–211.CrossRefPubMed
go back to reference Haber, L., Haber, R. N., Pennigroth, S., Novak, K., & Radgowski, H. (1993). Comparison of nine methods of indicating the direction of objects: Data from blind subjects. Perception, 22, 35–47.CrossRefPubMed Haber, L., Haber, R. N., Pennigroth, S., Novak, K., & Radgowski, H. (1993). Comparison of nine methods of indicating the direction of objects: Data from blind subjects. Perception, 22, 35–47.CrossRefPubMed
go back to reference Hamilton, R. H., Pascual-Leone, A., & Schlaug, G. (2004). Absolute pitch in blind musicians. NeuroReport, 15, 803–806.CrossRefPubMed Hamilton, R. H., Pascual-Leone, A., & Schlaug, G. (2004). Absolute pitch in blind musicians. NeuroReport, 15, 803–806.CrossRefPubMed
go back to reference Hannon, E. E., & Trehub, S. E. (2005). Tuning into musical rhythms: Infants learn more readily than adults. Proceedings of the National academy of Sciences of the United States of America, 102, 12639–12643.CrossRefPubMedPubMedCentral Hannon, E. E., & Trehub, S. E. (2005). Tuning into musical rhythms: Infants learn more readily than adults. Proceedings of the National academy of Sciences of the United States of America, 102, 12639–12643.CrossRefPubMedPubMedCentral
go back to reference Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108, 687–701.CrossRefPubMed Hohwy, J., Roepstorff, A., & Friston, K. (2008). Predictive coding explains binocular rivalry: An epistemological review. Cognition, 108, 687–701.CrossRefPubMed
go back to reference Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research, 54, 276–280.CrossRefPubMed Homae, F., Watanabe, H., Nakano, T., Asakawa, K., & Taga, G. (2006). The right hemisphere of sleeping infant perceives sentential prosody. Neuroscience Research, 54, 276–280.CrossRefPubMed
go back to reference Horstmann, G. (2002). Evidence for attentional capture by a surprising color singleton in visual search. Psychological Science, 13, 499–505.CrossRefPubMed Horstmann, G. (2002). Evidence for attentional capture by a surprising color singleton in visual search. Psychological Science, 13, 499–505.CrossRefPubMed
go back to reference Horstmann, G. (2005). Attentional capture by an unannounced color singleton depends on expectation discrepancy. Journal of Experimental Psychology: Human Perception and Performance, 31, 1039.PubMed Horstmann, G. (2005). Attentional capture by an unannounced color singleton depends on expectation discrepancy. Journal of Experimental Psychology: Human Perception and Performance, 31, 1039.PubMed
go back to reference Horstmann, G. (2006). The time course of intended and unintended allocation of attention. Psychological Research, 70, 13–25.CrossRefPubMed Horstmann, G. (2006). The time course of intended and unintended allocation of attention. Psychological Research, 70, 13–25.CrossRefPubMed
go back to reference Horstmann, G. (2015). The surprise–attention link: A review. Annals of the New York Academy of Sciences, 1339, 106–115.CrossRefPubMed Horstmann, G. (2015). The surprise–attention link: A review. Annals of the New York Academy of Sciences, 1339, 106–115.CrossRefPubMed
go back to reference Horstmann, G., & Becker, S. I. (2008). Attentional effects of negative faces: Top-down contingent or involuntary? Attention, Perception, & Psychophysics, 70, 1416–1434.CrossRef Horstmann, G., & Becker, S. I. (2008). Attentional effects of negative faces: Top-down contingent or involuntary? Attention, Perception, & Psychophysics, 70, 1416–1434.CrossRef
go back to reference Horstmann, G., & Herwig, A. (2016). Novelty biases attention and gaze in a surprise trial. Attention, Perception, & Psychophysics, 78, 69–77.CrossRef Horstmann, G., & Herwig, A. (2016). Novelty biases attention and gaze in a surprise trial. Attention, Perception, & Psychophysics, 78, 69–77.CrossRef
go back to reference Hunt, J. M., Smith, M. F., & Kernan, J. B. (1989). Processing effects of expectancy-discrepant persuasive messages. Psychological Reports, 65, 1359–1376.CrossRef Hunt, J. M., Smith, M. F., & Kernan, J. B. (1989). Processing effects of expectancy-discrepant persuasive messages. Psychological Reports, 65, 1359–1376.CrossRef
go back to reference Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49, 1295–1306.CrossRefPubMed Itti, L., & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49, 1295–1306.CrossRefPubMed
go back to reference Jones, M. R. (2009). Musical time. In S. Hallam, I. Cross, & M. Thaut (Eds.), The handbook of music psychology (pp. 81–92). New York: Oxford University Press. Jones, M. R. (2009). Musical time. In S. Hallam, I. Cross, & M. Thaut (Eds.), The handbook of music psychology (pp. 81–92). New York: Oxford University Press.
go back to reference Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRefPubMed Jones, M. R., & Boltz, M. (1989). Dynamic attending and responses to time. Psychological Review, 96, 459–491.CrossRefPubMed
go back to reference Karabanov, A., & Ullén, F. (2008). Implicit and explicit learning of temporal sequences studied with the process dissociation procedure. Journal of Neurophysiology, 100, 733–739.CrossRefPubMedPubMedCentral Karabanov, A., & Ullén, F. (2008). Implicit and explicit learning of temporal sequences studied with the process dissociation procedure. Journal of Neurophysiology, 100, 733–739.CrossRefPubMedPubMedCentral
go back to reference Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.CrossRefPubMed Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. Annual Review of Psychology, 55, 271–304.CrossRefPubMed
go back to reference Kupers, R., & Ptito, M. (2014). Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neuroscience and Biobehavioral Reviews, 41, 36–52.CrossRefPubMed Kupers, R., & Ptito, M. (2014). Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neuroscience and Biobehavioral Reviews, 41, 36–52.CrossRefPubMed
go back to reference Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119.CrossRef Large, E. W., & Jones, M. R. (1999). The dynamics of attending: How people track time-varying events. Psychological Review, 106, 119.CrossRef
go back to reference LeDoux, J. (1996). Emotional networks and motor control: A fearful view. Progress in Brain Research, 107, 437–446.CrossRefPubMed LeDoux, J. (1996). Emotional networks and motor control: A fearful view. Progress in Brain Research, 107, 437–446.CrossRefPubMed
go back to reference Lerdahl, F., & Jackendoff, R. (1981). On the theory of grouping and meter. The Musical Quarterly, 67, 479–506.CrossRef Lerdahl, F., & Jackendoff, R. (1981). On the theory of grouping and meter. The Musical Quarterly, 67, 479–506.CrossRef
go back to reference Lerens, E., Araneda, R., Renier, L., & De Volder, A. G. (2014). Improved beat asynchrony detection in early blind individuals. Perception, 43, 1083–1096.CrossRefPubMed Lerens, E., Araneda, R., Renier, L., & De Volder, A. G. (2014). Improved beat asynchrony detection in early blind individuals. Perception, 43, 1083–1096.CrossRefPubMed
go back to reference Malmierca, M. S., Sanchez-Vives, M. V., Escera, C., & Bendixen, A. (2014). Neuronal adaptation, novelty detection and regularity encoding in audition. Frontiers in Systems Neuroscience, 8, 111.PubMedPubMedCentral Malmierca, M. S., Sanchez-Vives, M. V., Escera, C., & Bendixen, A. (2014). Neuronal adaptation, novelty detection and regularity encoding in audition. Frontiers in Systems Neuroscience, 8, 111.PubMedPubMedCentral
go back to reference Meeter, M., Myers, C. E., & Gluck, M. A. (2005). Integrating incremental learning and episodic memory models of the hippocampal region. Psychological Review, 112, 560.CrossRefPubMed Meeter, M., Myers, C. E., & Gluck, M. A. (2005). Integrating incremental learning and episodic memory models of the hippocampal region. Psychological Review, 112, 560.CrossRefPubMed
go back to reference Mills, P. F., van der Steen, M. M., Schultz, B. G., & Keller, P. E. (2015). Individual differences in temporal anticipation and adaptation during sensorimotor synchronization. Timing & Time Perception, 3, 13–31.CrossRef Mills, P. F., van der Steen, M. M., Schultz, B. G., & Keller, P. E. (2015). Individual differences in temporal anticipation and adaptation during sensorimotor synchronization. Timing & Time Perception, 3, 13–31.CrossRef
go back to reference Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.CrossRefPubMed Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42, 313–329.CrossRefPubMed
go back to reference Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. International Journal of Psychophysiology, 88, 109–123.CrossRefPubMed Paavilainen, P. (2013). The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: A review. International Journal of Psychophysiology, 88, 109–123.CrossRefPubMed
go back to reference Parmentier, F. B. P. (2008). Towards a cognitive model of distraction by auditory novelty: The role of involuntary attention capture and semantic processing. Cognition, 109, 345–362.CrossRefPubMed Parmentier, F. B. P. (2008). Towards a cognitive model of distraction by auditory novelty: The role of involuntary attention capture and semantic processing. Cognition, 109, 345–362.CrossRefPubMed
go back to reference Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception: An Interdisciplinary Journal, 11, 409–464.CrossRef Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent in musical rhythms. Music Perception: An Interdisciplinary Journal, 11, 409–464.CrossRef
go back to reference Pascual-Leone, A. (1996). Reorganization of cortical motor outputs in the acquisition of new motor skills. In J. Kinura & H. Shibasaki (Eds.), Recent advances in clinical neurophysiology (pp. 304–308). Amsterdam: Elsevier Science. Pascual-Leone, A. (1996). Reorganization of cortical motor outputs in the acquisition of new motor skills. In J. Kinura & H. Shibasaki (Eds.), Recent advances in clinical neurophysiology (pp. 304–308). Amsterdam: Elsevier Science.
go back to reference Pascual-Leone, A., Cohen, L. G., Brasil-Neto, J. P., Valls-Solé, J., & Hallett, M. (1994). Differentiation of sensorimotor neuronal structures responsible for induction of motor evoked potentials, attenuation in detection of somatosensory stimuli, and induction of sensation of movement by mapping of optimal current directions. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 93, 230–236.CrossRef Pascual-Leone, A., Cohen, L. G., Brasil-Neto, J. P., Valls-Solé, J., & Hallett, M. (1994). Differentiation of sensorimotor neuronal structures responsible for induction of motor evoked potentials, attenuation in detection of somatosensory stimuli, and induction of sensation of movement by mapping of optimal current directions. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 93, 230–236.CrossRef
go back to reference Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.CrossRefPubMed Pascual-Leone, A., & Hamilton, R. (2001). The metamodal organization of the brain. Progress in Brain Research, 134, 427–445.CrossRefPubMed
go back to reference Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press, ISBN13: 978-0-19-512375-3, ISBN10: 0-19-512375-1. Patel, A. D. (2008). Music, language, and the brain. New York: Oxford University Press, ISBN13: 978-0-19-512375-3, ISBN10: 0-19-512375-1.
go back to reference Patel, C. R., Redhead, C., Cervi, A. L., & Zhang, H. (2012). Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hearing Research, 286, 41–54.CrossRefPubMed Patel, C. R., Redhead, C., Cervi, A. L., & Zhang, H. (2012). Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hearing Research, 286, 41–54.CrossRefPubMed
go back to reference Ponnath, A., Hoke, K. L., & Farris, H. E. (2013). Stimulus change detection in phasic auditory units in the frog midbrain: Frequency and ear specific adaptation. Journal of Comparative Physiology A, 199, 295–313.CrossRef Ponnath, A., Hoke, K. L., & Farris, H. E. (2013). Stimulus change detection in phasic auditory units in the frog midbrain: Frequency and ear specific adaptation. Journal of Comparative Physiology A, 199, 295–313.CrossRef
go back to reference Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception: An Interdisciplinary Journal, 2, 411–440.CrossRef Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception: An Interdisciplinary Journal, 2, 411–440.CrossRef
go back to reference Ptito, M., & Kupers, R. (2005). Cross-modal plasticity in early blindness. Journal of Integrative Neuroscience, 4, 479–488.CrossRefPubMed Ptito, M., & Kupers, R. (2005). Cross-modal plasticity in early blindness. Journal of Integrative Neuroscience, 4, 479–488.CrossRefPubMed
go back to reference R Core Team. (2013). R: a language and environment for statistical computing (version 3.4.0). R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/. Accessed 21 Apr 2017. R Core Team. (2013). R: a language and environment for statistical computing (version 3.4.0). R Foundation for Statistical Computing, Vienna, Austria. Retrieved from http://​www.​R-project.​org/​. Accessed 21 Apr 2017.
go back to reference Ranjbar, P., & Stenström, I. (2013). Monitor, a vibrotactile aid for environmental perception: a field evaluation by four people with severe hearing and vision impairment. The Scientific World Journal, 2013, 1–11. Ranjbar, P., & Stenström, I. (2013). Monitor, a vibrotactile aid for environmental perception: a field evaluation by four people with severe hearing and vision impairment. The Scientific World Journal, 2013, 1–11.
go back to reference Renier, L., De Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehavioral Reviews, 41, 53–63.CrossRefPubMed Renier, L., De Volder, A. G., & Rauschecker, J. P. (2014). Cortical plasticity and preserved function in early blindness. Neuroscience and Biobehavioral Reviews, 41, 53–63.CrossRefPubMed
go back to reference Röder, B., Krämer, U. M., & Lange, K. (2007). Congenitally blind humans use different stimulus selection strategies in hearing: An ERP study of spatial and temporal attention. Restorative Neurology & Neuroscience, 25, 311–322. Röder, B., Krämer, U. M., & Lange, K. (2007). Congenitally blind humans use different stimulus selection strategies in hearing: An ERP study of spatial and temporal attention. Restorative Neurology & Neuroscience, 25, 311–322.
go back to reference Röder, B., Rösler, F., & Neville, H. J. (1999a). Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans. Neuroscience Letters, 264, 53–56.CrossRefPubMed Röder, B., Rösler, F., & Neville, H. J. (1999a). Effects of interstimulus interval on auditory event-related potentials in congenitally blind and normally sighted humans. Neuroscience Letters, 264, 53–56.CrossRefPubMed
go back to reference Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14, 121–124.CrossRefPubMed Röder, B., Rösler, F., & Spence, C. (2004). Early vision impairs tactile perception in the blind. Current Biology, 14, 121–124.CrossRefPubMed
go back to reference Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., & Neville, H. J. (1999b). Improved auditory spatial tuning in blind humans. Nature, 400, 162–166.CrossRefPubMed Röder, B., Teder-Sälejärvi, W., Sterr, A., Rösler, F., Hillyard, S. A., & Neville, H. J. (1999b). Improved auditory spatial tuning in blind humans. Nature, 400, 162–166.CrossRefPubMed
go back to reference Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 752–760.CrossRef Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16, 752–760.CrossRef
go back to reference Schall, U., Johnston, P., Todd, J., Ward, P. B., & Michie, P. T. (2003). Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs. Neuroimage, 20, 729–736.CrossRefPubMed Schall, U., Johnston, P., Todd, J., Ward, P. B., & Michie, P. T. (2003). Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs. Neuroimage, 20, 729–736.CrossRefPubMed
go back to reference Schmack, K., Gomez-Carrillo de Castro, A., Rothkirch, M., Sekutowicz, M., Rössler, H., Haynes, J. D., & Sterzer, P. (2013). Delusions and the role of beliefs in perceptual inference. Journal of Neuroscience, 33, 13701–13712.CrossRefPubMed Schmack, K., Gomez-Carrillo de Castro, A., Rothkirch, M., Sekutowicz, M., Rössler, H., Haynes, J. D., & Sterzer, P. (2013). Delusions and the role of beliefs in perceptual inference. Journal of Neuroscience, 33, 13701–13712.CrossRefPubMed
go back to reference Schomaker, J., & Meeter, M. (2014). Novelty detection is enhanced when attention is otherwise engaged: An event-related potential study. Experimental Brain Research, 232, 995–1011.CrossRefPubMed Schomaker, J., & Meeter, M. (2014). Novelty detection is enhanced when attention is otherwise engaged: An event-related potential study. Experimental Brain Research, 232, 995–1011.CrossRefPubMed
go back to reference Schomaker, J., Roos, R., & Meeter, M. (2014). Expecting the unexpected: The effects of deviance on novelty processing. Behavioral Neuroscience, 128, 146.CrossRefPubMed Schomaker, J., Roos, R., & Meeter, M. (2014). Expecting the unexpected: The effects of deviance on novelty processing. Behavioral Neuroscience, 128, 146.CrossRefPubMed
go back to reference Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013a). The implicit learning of metrical and nonmetrical temporal patterns. The Quarterly Journal of Experimental Psychology, 66, 360–380.CrossRefPubMed Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013a). The implicit learning of metrical and nonmetrical temporal patterns. The Quarterly Journal of Experimental Psychology, 66, 360–380.CrossRefPubMed
go back to reference Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013b). A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns. PLoS One, 8, e75163.CrossRefPubMedPubMedCentral Schultz, B. G., Stevens, C. J., Keller, P. E., & Tillmann, B. (2013b). A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns. PLoS One, 8, e75163.CrossRefPubMedPubMedCentral
go back to reference Shanks, D. R. (2005). Implicit learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 202–220). London: Sage. Shanks, D. R. (2005). Implicit learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of cognition (pp. 202–220). London: Sage.
go back to reference Slimani, H., Danti, S., Ricciardi, E., Pietrini, P., Ptito, M., & Kupers, R. (2013). Hypersensitivity to pain in congenital blindness. Pain, 154, 1973–1978.CrossRefPubMed Slimani, H., Danti, S., Ricciardi, E., Pietrini, P., Ptito, M., & Kupers, R. (2013). Hypersensitivity to pain in congenital blindness. Pain, 154, 1973–1978.CrossRefPubMed
go back to reference Stevens, A. A., & Weaver, K. (2005). Auditory perceptual consolidation in early-onset blindness. Neuropsychologia, 43, 1901–1910.CrossRefPubMed Stevens, A. A., & Weaver, K. (2005). Auditory perceptual consolidation in early-onset blindness. Neuropsychologia, 43, 1901–1910.CrossRefPubMed
go back to reference Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398.CrossRefPubMed Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6, 391–398.CrossRefPubMed
go back to reference Van der Lubbe, R. H., Van Mierlo, C. M., & Postma, A. (2010). The involvement of occipital cortex in the early blind in auditory and tactile duration discrimination tasks. Journal of Cognitive Neuroscience, 22, 1541–1556.CrossRefPubMed Van der Lubbe, R. H., Van Mierlo, C. M., & Postma, A. (2010). The involvement of occipital cortex in the early blind in auditory and tactile duration discrimination tasks. Journal of Cognitive Neuroscience, 22, 1541–1556.CrossRefPubMed
go back to reference Von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404, 871–876.CrossRef Von Melchner, L., Pallas, S. L., & Sur, M. (2000). Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature, 404, 871–876.CrossRef
go back to reference Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2010). Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia, 48, 344–348.CrossRefPubMed Wan, C. Y., Wood, A. G., Reutens, D. C., & Wilson, S. J. (2010). Early but not late-blindness leads to enhanced auditory perception. Neuropsychologia, 48, 344–348.CrossRefPubMed
go back to reference Winkler, I., Denham, S. L., & Nelken, I. (2009). Modelling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.CrossRefPubMed Winkler, I., Denham, S. L., & Nelken, I. (2009). Modelling the auditory scene: Predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 13, 532–540.CrossRefPubMed
go back to reference Zhao, L., Liu, Y., Shen, L., Feng, L., & Hong, B. (2011). Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience, 181, 163–174.CrossRefPubMed Zhao, L., Liu, Y., Shen, L., Feng, L., & Hong, B. (2011). Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience, 181, 163–174.CrossRefPubMed
Metagegevens
Titel
The implicit learning of metrical and non-metrical rhythms in blind and sighted adults
Auteurs
Claudia Carrara-Augustenborg
Benjamin G. Schultz
Publicatiedatum
15-09-2017
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2019
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-017-0916-0

Andere artikelen Uitgave 5/2019

Psychological Research 5/2019 Naar de uitgave