Skip to main content
Top
Gepubliceerd in: Journal of Foot and Ankle Research 1/2014

Open Access 01-04-2014 | Meeting abstract

The effect of various heights of high-heeled shoes on foot arch deformation: Finite element analysis

Auteurs: Amir Ahmady, Ehsan Soodmand, Iman Soodmand, Thomas L Milani

Gepubliceerd in: Journal of Foot and Ankle Research | bijlage 1/2014

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN
Women are interested to wear high-heeled shoes to increase their attractiveness. High-heeled shoes might create harmful effects on the musculoskeletal system. Besides earlier studies proved that the function of foot and lower extremity will change due to wearing high-heeled shoes [1, 2]. Because of limitations of the experimental methods, direct measurements of internal strains and stresses of the foot are inconceivable or invasive [3]. In this research the comparison of the effect of 3 different sizes of height of high-heeled shoes on foot bones and plantar fascia is the main objective. Von-Misses stresses, strain, and arch deformation of the foot during balanced standing in women are the parameters which are investigated in this research. The output of this research is describing the effect of increasing of heel height on foot bones stresses.
Mimics and ABAQUS software are employed to create a finite element (FE) model of the human ankle. MIMICS used as the segmentation software and ABAQUS used for finite element analysis (FEA). A CT (Computed Topography) scan images from the right foot of a normal female subject was imported into MIMICS. The segmented surfaces were then imported into SolidWorks CAD (Computer aided design) system to create model assembly. In order to creating tetrahedral finite element meshes the solid models of foot bones and encapsulated soft tissue structures models established in MIMICS software is imported into ABAQUS. Contact interactions among the major joints were prescribed to allow relative bone movements.
The soft tissue and orthotic material were defined as hyper elastic while other tissues were idealized as homogeneous, isotropic, and linearly elastic. The ground reaction and extrinsic muscles forces for simulating the stance phase of gait were applied at the inferior ground support as a boundary condition and at their corresponding points of insertion by defining contraction forces via axial connector elements. During the balance standing condition, on half of body weight is transferred from each foot to the ground [4].
The result of this study on the shoes with heel height 1.5 inches, 2.5 inches, and 3.5 inches shows that an increase in shoe heel height resulted in a decrease in arch deformation (Figure 1). There was a common rise in a peak Von-Mises stress of foot bones with increasing shoe heel height (Figure 2). With 2.5 inches high-heeled shoe, the strain and the total tensional force in the plantar fascia was minimum (Figure 3).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Podotherapeut Totaal

Binnen de bundel kunt u gebruik maken van boeken, tijdschriften, e-learnings, web-tv's en uitlegvideo's. BSL Podotherapeut Totaal is overal toegankelijk; via uw PC, tablet of smartphone.

Literatuur
1.
go back to reference Esenyel M, et al: Kinetics of high-heeled gait. Journal of the American Podiatric Medical Association. 2003, 93 (1): 27-32.CrossRefPubMed Esenyel M, et al: Kinetics of high-heeled gait. Journal of the American Podiatric Medical Association. 2003, 93 (1): 27-32.CrossRefPubMed
2.
go back to reference Yu J, et al: Biomechanical simulation of high-heeled shoe donning and walking. Journal of Biomechanics. 2013, 46 (12): 2067-2074. 10.1016/j.jbiomech.2013.05.009.CrossRefPubMed Yu J, et al: Biomechanical simulation of high-heeled shoe donning and walking. Journal of Biomechanics. 2013, 46 (12): 2067-2074. 10.1016/j.jbiomech.2013.05.009.CrossRefPubMed
3.
go back to reference Yu J, et al: Development of a finite element model of female foot for high-heeled shoe design. Clinical Biomechanics. 2008, 23: S31-S38.CrossRefPubMed Yu J, et al: Development of a finite element model of female foot for high-heeled shoe design. Clinical Biomechanics. 2008, 23: S31-S38.CrossRefPubMed
4.
go back to reference Franciosa P, Gerbino S: From CT scan to plantar pressure map distribution of a 3D anatomic human foot. COMSOL Conference. 2010 Franciosa P, Gerbino S: From CT scan to plantar pressure map distribution of a 3D anatomic human foot. COMSOL Conference. 2010
Metagegevens
Titel
The effect of various heights of high-heeled shoes on foot arch deformation: Finite element analysis
Auteurs
Amir Ahmady
Ehsan Soodmand
Iman Soodmand
Thomas L Milani
Publicatiedatum
01-04-2014
Uitgeverij
BioMed Central
Gepubliceerd in
Journal of Foot and Ankle Research / Uitgave bijlage 1/2014
Elektronisch ISSN: 1757-1146
DOI
https://doi.org/10.1186/1757-1146-7-S1-A78

Andere artikelen bijlage 1/2014

Journal of Foot and Ankle Research 1/2014 Naar de uitgave